Download Free Hydrogen Science And Engineering Book in PDF and EPUB Free Download. You can read online Hydrogen Science And Engineering and write the review.

Authored by 50 top academic, government and industry researchers, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it also discusses such broader topics as the environmental impact, education, safety and regulatory developments. The text is all-encompassing, covering a wide range that includes hydrogen as an energy carrier, hydrogen for storage of renewable energy, and incorporating hydrogen technologies into existing technologies.
Science and Engineering of Hydrogen-Based Energy Technologies explores the generation of energy using hydrogen and hydrogen-rich fuels in fuel cells from the perspective of its integration into renewable energy systems using the most sound and current scientific knowledge. The book first examines the evolution of energy utilization and the role expected to be played by hydrogen energy technologies in the world's energy mix, not just for energy generation, but also for carbon capture, storage and utilization. It provides a general overview of the most common and promising types of fuel cells, such as PEMFCs, SOFCs and direct alcohol fuel cells. The co-production of chemical and electrolysis cells, as well as the available and future materials for fuel cells production are discussed. It then delves into the production of hydrogen from biomass, including waste materials, and from excess electricity produced by other renewable energy sources, such as solar, wind, hydro and geothermal. The main technological approaches to hydrogen storage are presented, along with several possible hydrogen energy engineering applications. Science and Engineering of Hydrogen-Based Energy Technologies's unique approach to hydrogen energy systems makes it useful for energy engineering researchers, professionals and graduate students in this field. Policy makers, energy planning and management professionals, and energy analysts can also benefit from the comprehensive overview that it provides. - Presents engineering fundamentals, commercially deployed technologies, up-and-coming developments and applications through a systemic approach - Explores the integration of hydrogen technologies in renewable energy systems, including solar, wind, bioenergy and ocean energy - Covers engineering standards, guidelines and regulations, as well as policy and social aspects for large-scale deployment of these technologies
This book focuses on the fundamental principles and latest research findings in hydrogen energy fields including: hydrogen production, hydrogen storage, fuel cells, hydrogen safety, economics, and the impact on society. Further, the book introduces the latest development trends in practical applications, especially in commercial household fuel cells and commercial fuel cell vehicles in Japan. This book not only helps readers to further their basic knowledge, but also presents the state of the art of hydrogen-energy-related research and development. This work serves as an excellent reference for beginners such as graduate students, as well as a handbook and systematic summary of entire hydrogen-energy systems for scientists and engineers.
Authored by 50 top academic, government and industry researchers, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it also discusses such broader topics as the environmental impact, education, safety and regulatory developments. The text is all-encompassing, covering a wide range that includes hydrogen as an energy carrier, hydrogen for storage of renewable energy, and incorporating hydrogen technologies into existing technologies.
Unconventional energy sources have gained and will continue to gain an increasing share of energy systems around the world. Today, hydrogen is recognized as a non-polluting energy carrier because it does not contribute to global warming if it is produced from renewable sources. Hydrogen is already part of today's chemical industry, but as an energy source, its rare advantages can only be obtained with the help of technologies. Currently, the fuel cell is considered the cleanest sustainable energy. With the development of fuel cells, hydrogen-based energy generation becomes a reality. Hydrogen Fuel Cell Technology for Stationary Applications is an essential publication that focuses on the advantages of hydrogen as a primary energy center and addresses its use in the sustainable future of stationary applications. While highlighting a broad range of topics including cost expectations, production methods, and social impact, this publication explores all aspects of the implementation and dissemination of fuel cell technology in the hope of establishing a sustainable marketplace for it. This book is ideally designed for fuel cell manufacturers, architects, electrical engineers, civil engineers, environmental engineers, advocates, manufacturers, mechanics, researchers, academicians, and students.
Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.Volume 2 is divided into three parts, part one looks at the mechanisms of hydrogen interactions with metals including chapters on the adsorption and trap-sensitive diffusion of hydrogen and its impact on deformation and fracture processes. Part two investigates modern methods of modelling hydrogen damage so as to predict material-cracking properties. The book ends with suggested future directions in science and engineering to manage the hydrogen embrittlement of high-performance metals in energy systems.With its distinguished editors and international team of expert contributors, Volume 2 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation. - Summarises the wealth of recent research on understanding and dealing with the safety, durability, performance and economic operation of using gaseous hydrogen at high pressure - Chapters review mechanisms of hydrogen embrittlement including absorption, diffusion and trapping of hydrogen in metals - Analyses ways of modelling hydrogen-induced damage and assessing service life
With contributions from noted laboratory scientists, professors, and engineers, Hydrogen Energy and Vehicle Systems presents a new comprehensive approach for applying hydrogen-based technologies to the transportation and electric power generation sectors. It shows how these technologies can improve the efficiency and reliability of energy and trans
Fuel cells are expected to play a major role in the future power supply that will transform to renewable, decentralized and fluctuating primary energies. At the same time the share of electric power will continually increase at the expense of thermal and mechanical energy not just in transportation, but also in households. Hydrogen as a perfect fuel for fuel cells and an outstanding and efficient means of bulk storage for renewable energy will spearhead this development together with fuel cells. Moreover, small fuel cells hold great potential for portable devices such as gadgets and medical applications such as pacemakers. This handbook will explore specific fuel cells within and beyond the mainstream development and focuses on materials and production processes for both SOFC and lowtemperature fuel cells, analytics and diagnostics for fuel cells, modeling and simulation as well as balance of plant design and components. As fuel cells are getting increasingly sophisticated and industrially developed the issues of quality assurance and methodology of development are included in this handbook. The contributions to this book come from an international panel of experts from academia, industry, institutions and government. This handbook is oriented toward people looking for detailed information on specific fuel cell types, their materials, production processes, modeling and analytics. Overview information on the contrary on mainstream fuel cells and applications are provided in the book 'Hydrogen and Fuel Cells', published in 2010.
Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physi
Can hydrogen and electricity supply all of the world’s energy needs? Handbook of Hydrogen Energy thoroughly explores the notion of a hydrogen economy and addresses this question. The handbook considers hydrogen and electricity as a permanent energy system and provides factual information based on science. The text focuses on a large cross section of applications such as fuel cells and catalytic combustion of hydrogen. The book also includes information on inversion curves, physical and thermodynamic tables, and properties of storage materials, data on specific heats, and compressibility and temperature–entropy charts and more. Analyzes the principles of hydrogen energy production, storage, and utilization Examines electrolysis, thermolysis, photolysis, thermochemical cycles, and production from biomass and other hydrogen production methods Covers all modes of hydrogen storage: gaseous, liquid, slush, and metal hydride storage Handbook of Hydrogen Energy serves as a resource for graduate students, as well as a reference for energy and environmental engineers and scientists.