Download Free Hydrogen Bonding In Biological Structures Book in PDF and EPUB Free Download. You can read online Hydrogen Bonding In Biological Structures and write the review.

Hydrogen bonds are weak attractions, with a binding strength less than one-tenth that of a normal covalent bond. However, hydrogen bonds are of extraordinary importance; without them all wooden structures would collapse, cement would crumble, oceans would vaporize, and all living things would disintegrate into random dispersions of inert matter. Hydrogen Bonding in Biological Structures is informative and eminently usable. It is, in a sense, a Rosetta stone that unlocks a wealth of information from the language of crystallography and makes it accessible to all scientists. (From a book review of Kenneth M. Harmon, Science 1992)
The weak or non-conventional hydrogen bond has been subject of intense scrutiny over recent years in several fields, in particular in structural chemistry, structural biology, and also in the pharmaceutical sciences. There is today a large body of experimental and theoretical evidenceconfirming that hydrogen bonds like C-H...O, N-H...pi, C-H...pi and even bonds like O-H...metal play distinctive roles in molecular recognition, guiding molecular association, and in determining molecular and supramolecular architectures. The relevant compound classes include organometalliccomplexes, organic and bio-organic systems, and also DNA and proteins. The book provides a comprehensive assessment of this interaction type, and is of interest to all those interested in structural and supramolecular science, including fields as crystal engineering and drug design.
This book uses examples from experimental studies to illustrate theoretical investigations, allowing greater understanding of hydrogen bonding phenomena. The most important topics in recent studies are covered. This volume is an invaluable resource that will be of particular interest to physical and theoretical chemists, spectroscopists, crystallographers and those involved with chemical physics.
This book is intended as an easy to read supplement to the often brief descriptions of hydrogen bonding found in most undergraduate chemistry and molecular biology textbooks. It describes and discusses current ideas concerning hydrogen bonds ranging from the very strong to the very weak, with introductions to the experimental and theoretical methods involved.
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid
Hydrogen bond (H-bond) effects are known: it makes sea water liquid, joins cellulose microfibrils in trees, shapes DNA into genes and polypeptide chains into wool, hair, muscles or enzymes. Its true nature is less known and we may still wonder why O-H...O bond energies range from less than 1 to more than 30 kcal/mol without apparent reason. This H-bond puzzle is re-examined here from its very beginning and presented as an inclusive compilation of experimental H-bond energies and geometries. New concepts emerge from this analysis: new classes of systematically strong H-bonds (CAHBs and RAHBs: charge- and resonance-assisted H-bonds); full H-bond classification in six classes (the six chemical leitmotifs); and assessment of the covalent nature of strong H-bonds. This leads to three distinct but inter-consistent models able to rationalize the H-bond and predict its strength, based on classical VB theory, matching of donor-acceptor acid-base parameters (PA or pKa), or shape of the H-bond proton-transfer pathway. Applications survey a number of systems where strong H-bonds play an important functional role, namely drug-receptor binding, enzymatic catalysis, ion-transport through cell membranes, crystal design and molecular mechanisms of functional materials.
A unified overview of the dynamical properties of water and its unique and diverse role in biological and chemical processes.
The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.
Fundamentals of Molecular Structural Biology reviews the mathematical and physical foundations of molecular structural biology. Based on these fundamental concepts, it then describes molecular structure and explains basic genetic mechanisms. Given the increasingly interdisciplinary nature of research, early career researchers and those shifting into an adjacent field often require a "fundamentals" book to get them up-to-speed on the foundations of a particular field. This book fills that niche.