Download Free Hydrodynamics And Heat Transfer In Fluidized Beds Book in PDF and EPUB Free Download. You can read online Hydrodynamics And Heat Transfer In Fluidized Beds and write the review.

This book provides a much needed and thorough treatment of the heat transfer in agitated disperse systems. It gives predictive equations for the heat transfer in moving beds, bubbling and circulating fluidized beds, pneumatic transport in vertical tubes and particulate fluidized beds. Owing to the many different modes of activation of heat transfer, the basic approach of the book is to provide experimental evidence of the relevance of particle motion to the proximity of solid surfaces for the heat transfer observed. This has been achieved by the evaluation of experiments obtained with a newly developed pulsed light method using luminous particles. Heat Transfer in Fluidized Beds will be of great use to students and researchers involved in heat transfer and thermodynamics.
A concise and clear treatment of the fundamentals of fluidization, with a view to its applications in the process and energy industries.
Besides being one of the best Clean Coal Technologies, fluidized beds are also proving to be the most practical option for biomass conversion. Although the technology is well established, the field lacks a comprehensive guide to the design and operating principles of fluidized bed boilers and gasifiers. With more than 30 years of research and indus
Fluidization Engineering, Second Edition, expands on its original scope to encompass these new areas and introduces reactor models specifically for these contacting regimes. Completely revised and updated, it is essentially a new book. Its aim is to distill from the thousands of studies those particular developments that are pertinent for the engineer concerned with predictive methods, for the designer, and for the user and potential user of fluidized beds. - Covers the recent advances in the field of fluidization. - Presents the studies of developments necessary to the engineers, designers, and users of fluidized beds.
The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.
The field of multiphase flows has grown by leaps and bounds in the last thirty years and is now regarded as a major discipline. Engineering applications, products and processes with particles, bubbles and drops have consistently grown in number and importance. An increasing number of conferences, scientific fora and archived journals are dedicated to the dissemination of information on flow, heat and mass transfer of fluids with particles, bubbles and drops. Numerical computations and "thought experiments" have supplemented most physical experiments and a great deal of the product design and testing processes. The literature on computational fluid dynamics with particles, bubbles and drops has grown at an exponential rate, giving rise to new results, theories and better understanding of the transport processes with particles, bubbles and drops. This book captures and summarizes all these advances in a unified, succinct and pedagogical way. Contents: Fundamental Equations and Characteristics of Particles, Bubbles and Drops; Low Reynolds Number Flows; High Reynolds Number Flows; Non-Spherical Particles, Bubbles and Drops; Effects of Rotation, Shear and Boundaries; Effects of Turbulence; Electro-Kinetic, Thermo-Kinetic and Porosity Effects; Effects of Higher Concentration and Collisions; Molecular and Statistical Modeling; Numerical Methods-CFD. Key Features Summarizes the recent important results in the theory of transport processes of fluids with particles, bubbles and drops Presents the results in a unified and succinct way Contains more than 600 references where an interested reader may find details of the results Makes connections from all theories and results to physical and engineering applications Readership: Researchers, practicing engineers and physicists that deal with any aspects of Multiphase Flows. It will also be of interest to academics and researchers in the general fields of mechanical and chemical engineering.