Download Free Hydrocarbon Migration Systems Analysis Book in PDF and EPUB Free Download. You can read online Hydrocarbon Migration Systems Analysis and write the review.

The main intention of this book is to provide geoscientists interested or working in hydrocarbon exploration with a comprehensive understanding of the evolution of hydrocarbon migration systems in sedimentary basins and to give guidelines for its application in basin evaluation. For this purpose, the book fully integrates hydrogeologic and hydrodynamic aspects of the evolution of sedimentary basins with petroleum geologic aspects. It will be of interest to petroleum geologists, hydrogeologists, geochemists and reservoir geologists.
This book presents the authors' research findings on the dynamics of oil migration, research methodologies, insights and applications in petroliferous basins. It studies the behaviors of oil migration in porous media through physical experiments and numerical simulations, explores the mechanism of oil migration and effects of migration process, and then establishes a migration modeling method by coupling the source, driving forces and carriers. The new method can be used to estimate the amount of migrated hydrocarbons and then predict the location of possible hydrocarbon accumulations in different parts of a basin. This approach is useful for resources assessment and prediction of the distribution of hydrocarbon accumulations. An example utilizing this methodology is presented to study the dynamics of migration and accumulation processes in the southern slope of Dongying Depression in Bohai Bay Basin in China. The book appeals to scientists and professionals working on petroleum prospecting as well as faculty and students in petroleum geology.
This book provides a state-of-the-art overview of the development of concepts and methodology of hydrological sys tems analysis and its wide range of practical applications. Hydrological systems analysis involves the management, processing and interpretation of huge amounts of geoscien tific as well as ecological and historical data of many different types and sources, which can only be handled coherently and efficiently by using interactive geoscientific information systems. Geoscientific information systems as well as flow simulators are integral parts of the methodology. The methodology is clearly explained in the book and ample figures il lustrate the text. The emphasis of the book is on the practical applicability of hydrological systems analysis in integrated water re source management, nature conservation and environmental planning. The compilation of many case-studies, conducted by TNO geohydrologists and others in recent years, included in the book deals with different temporal and spatial scales and various geohydrological settings in The Netherlands, Poland, the European Union as well as in Indonesia. These case studies underpin the strength and elegance of hydrological systems analysis.
Investigations about porosity in petroleum reservoir rocks are discussed by Schmoker and Gautier. Pollastro discusses the uses of clay minerals as exploration tools that help to elucidate basin, source-rock, and reservoir history. The status of fission-track analysis, which is useful for determining the thermal and depositional history of deeply buried sedimentary rocks, is outlined by Naeser. The various ways workers have attempted to determine accurate ancient and present-day subsurface temperatures are summarized with numerous references by Barker. Clayton covers three topics: (1) the role of kinetic modeling in petroleum exploration, (2) biological markers as an indicator of depositional environment of source rocks and composition of crude oils, and (3) geochemistry of sulfur in source rocks and petroleum. Anders and Hite evaluate the current status of evaporite deposits as a source for crude oil.
Practical Petroleum Geochemistry for Exploration and Production provides readers with a single reference that addresses the principle concepts and applications of petroleum geochemistry used in finding, evaluating, and producing petroleum deposits. Today, there are few reference books available on how petroleum geochemistry is applied in exploration and production written specifically for geologists, geophysicists, and petroleum engineers. This book fills that void and is based on training courses that the author has developed over his 37-year career in hydrocarbon exploration and production. Specific topical features include the origin of petroleum, deposition of source rock, hydrocarbon generation, and oil and gas migrations that lead to petroleum accumulations. Also included are descriptions on how these concepts are applied to source rock evaluation, oil-to-oil, and oil-to-source rock correlations, and ways of interpreting natural gas data in exploration work. Finally, a thorough description on the ways petroleum geochemistry can assist in development and production work, including reservoir continuity, production allocation, and EOR monitoring is presented. Authored by an expert in petroleum geochemistry, this book is the ideal reference for any geoscientist looking for exploration and production content based on extensive field-based research and expertise. - Emphasizes the practical application of geochemistry in solving exploration and production problems - Features more than 200 illustrations, tables, and diagrams to underscore key concepts - Authored by an expert geochemist that has nearly 40 years of experience in field-based research, applications, and instruction - Serves as a refresher reference for geochemistry specialists and non-specialists alike
Elements of Petroleum Geology, Fourth Edition is a useful primer for geophysicists, geologists and petroleum engineers in the oil industry who wish to expand their knowledge beyond their specialized area. It is also an excellent introductory text for a university course in petroleum geoscience. This updated edition includes new case studies on non-conventional exploration, including tight oil and shale gas exploration, as well as coverage of the impacts on petroleum geology on the environment. Sections on shale reservoirs, flow units and containers, IOR and EOR, giant petroleum provinces, halo reservoirs, and resource estimation methods are also expanded. - Written by a preeminent petroleum geologist and sedimentologist with decades of petroleum exploration in remote corners of the world - Covers information pertinent to everyone working in the oil and gas industry, especially geophysicists, geologists and petroleum reservoir engineers - Fully revised with updated references and expanded coverage of topics and new case studies
Hydrocarbon systems, by nature, are a complex interplay of elements that must be spatially and temporally aligned to result in the generation and preservation of subsurface hydrocarbon accumulations. To meet the increasing challenges of discovering hydrocarbon resources, it is essential that we advance our understanding of these systems through new geochemical approaches and analytical developments. Such development requires that academic- and industry-led research efforts converge in ways that are unique to the geosciences. The aim of this volume is to bring together a multidisciplinary geochemical community from industry and academia working in hydrocarbon systems to publish recent advances and state-of-the-art approaches to resolve the many remaining questions in hydrocarbon systems analysis. From Source to Seep presents geochemical and isotopic studies that are grouped into three themes: (1) source-rock identification and the temperature/timing of hydrocarbon generation; (2) mechanisms and time-scales associated with hydrocarbon migration, trapping, storage and alteration; and (3) the impact of fluid flow on reservoir properties.