Download Free Hybrid Organic Inorganic Interfaces Book in PDF and EPUB Free Download. You can read online Hybrid Organic Inorganic Interfaces and write the review.

Das erste Handbuch und gut zugängliche Referenzwerk zu diesem zunehmend wichtigen Thema erläutert in einem anwendungsorientierten Ansatz Synthese, Design, Charakterisierung und Simulation von Grenzflächen bei hybriden organisch-anorganischen Materialien.
Hybrid organic-inorganic perovskites (HOIPs) have attracted substantial interest due to their chemical variability, structural diversity and favorable physical properties the past decade. This materials class encompasses other important families such as formates, azides, dicyanamides, cyanides and dicyanometallates. The book summarizes the chemical variability and structural diversity of all known hybrid organic-inorganic perovskites subclasses including halides, azides, formates, dicyanamides, cyanides and dicyanometallates. It also presents a comprehensive account of their intriguing physical properties, including photovoltaic, optoelectronic, dielectric, magnetic, ferroelectric, ferroelastic and multiferroic properties. Moreover, the current challenges and future opportunities in this exciting field are also been discussed. This timely book shows the readers a complete landscape of hybrid organic-inorganic pervoskites and associated multifuctionalities.
This four-volume handbook gives a state-of-the-art overview of hybrid organic inorganic perovskites, both two dimensional (2D) and three dimensional (3D), from synthesis and characterization and simulation to optoelectronic devices (such as solar cells and light emitting diodes), spintronics devices and catalysis application. The editors, coming from academia and national laboratory, are known for their didactic skills as well as their technical expertise. Coordinating the efforts of 30 expert authors in 21 chapters, they construct the story of hybrid perovskite structural and optical properties, electronic and spintronic response, laser action, and catalysis from varied viewpoints: materials science, chemical engineering, and energy engineering. The four volumes are arranged according to the focus material properties. Volume 1 is focused on the material physical properties including structure, deposition characteristic and the structure of the electronic bands and excitons of these compounds. Volume 2 covers the hybrid perovskite optical properties including the ultrafast optical response, photoluminescence and laser action. Volume 3 contains the spin response of these compounds including application such as spin valves, photogalvanic effect, and magnetic response of light emitting diodes and solar cell devices. Finally, and highly relevant to tomorrow's energy challenges, volume 4 is focused on the physics and device properties of the most relevant applications of the hybrid perovskites, namely photovoltaic solar cells. The text contains many high-quality colorful illustrations and examples, as well as thousands of up-to-date references to peer-reviewed articles, reports and websites for further reading. This comprehensive and well-written handbook is a must-have reference for universities, research groups and companies working with the hybrid organic inorganic perovskites.
This book deals with one of the most attractive fields in material science and technology research. In fact, the concept of organic–inorganic hybrid materials is applied to a wide variety of approaches that include materials with inorganic and/or organic nature with respect to their matrices and/or dispersed phase. The present book compiles one editorial and eleven approaches to the topic, and intends to provide a transversal idea about what the field of the so-called organic–inorganic hybrid materials means in actual scientific scenarios. In any case, the role is pointed out of the interphase between the components as the critical aspect to consider, as a way to enhance and understand these components in order to design materials with "tailor-made" organized structures considering the increasing nano-, meso-, micro- and macro-scales.
Provides detailed descriptions of organic, inorganic, and hybrid solar cells and the latest developments in the quest to produce low-cost, long-lasting solar cells What will it take to transform solar energy from an important alternative source to a truly competitive and, perhaps, dominant one? Lower cost and longer life. Organic, Inorganic, and Hybrid Solar Cells: Principles and Practice provides in-depth information on the three types of existing solar cells, giving readers a good foundation for evaluating the technologies with the most potential for competing with energy from fossil fuels. Featuring a Foreword written by Nobel Peace Prize co-winner Dr. Woodrow W. Clark, this timely and comprehensive guide: Focuses on the realization of low-cost and long-life solar cells study and applications Reviews the properties of inorganic materials, primarily semiconductors Explores the electrical and optical properties of organic materials Discusses the interfacing of organic and inorganic materials: compatibility of deposition, the adhesion problem, formation of surface states, and band-level realignment Provides a detailed description of organic-inorganic hybrid solar cells, from the basic principles to practical devices Introduces a sandwiched structure for hybrid solar cells, which combines a far lower production cost than inorganic solar cells while stabilizing and extending the life of organic material far beyond that of organic solar cells Organic, Inorganic, and Hybrid Solar Cells: Principles and Practice is a first-rate professional reference for electrical engineers and important supplemental reading for graduate students in related areas of study.
This book covers the latest advances in polymer-inorganic nanocomposites, with particular focus on high-added-value applications in fields including electronics, optics, magnetism and biotechnology. The unique focus of this book is on electronic, optical, magnetic and biomedical applications of hybrid nanocomposites. Coverage includes: Synthesis methods and issues and production scale-up; Characterization methods; Electronic applications; Optical applications and Photonics; Magnetic applications; and Biomedical applications. The book offers readers a solid grasp of the state of the art, and of current challenges in non-traditional applications of hybrid nanocomposites.
Photoelectrochemical (PEC) water splitting is a highly promising process for converting solar energy into hydrogen energy. The book presents new cutting-edge research findings in this field. Subjects covered include fabrication and characteristics of various electrode materials, cell design and strategies for enhancing the properties of PEC electrode materials. Keywords: Renewable Energy Sources, Solar Energy Conversion, Hydrogen Production, Photoelectrochemical Water Splitting, Electrode Materials for Water Splitting, Transition Metal Chalcogenide Electrodes, Narrow Bandgap Semiconductor Electrodes, Ti-based Electrode Materials, BiVO4 Photoanodes, Noble Electrode Materials, Cell Design for Water Splitting.
Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: • The newest polymeric materials and processes beyond the classical structure of PLED • Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. • The novel work carried out on electrospun nanofibers used for LEDs. • The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. • Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. • Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.
This book reports the basics of hybrid phosphor materials, their synthesis routes and their special properties and characterization techniques. It gives the reader information about the natural origins and development of hybrid materials, which are developed by combining inorganic and organic species in one material interface-determined materials. The book provides a general classification of hybrid materials, wherein inorganic materials modified by organic moieties are distinguished from organic materials or matrices modified by inorganic constituents. It gives a focus to the functionalization of organic materials by inorganic additives. The application areas covered include optoelectronic field, sensor applications, biological and environmental applications.