Download Free Hybrid Intelligent Approaches For Smart Energy Book in PDF and EPUB Free Download. You can read online Hybrid Intelligent Approaches For Smart Energy and write the review.

HYBRID INTELLIGENT APPROACHES FOR SMART ENERGY Green technologies and cleaner energy are two of the most important topics facing our world today, and the march toward efficient energy systems, smart cities, and other green technologies, has been, and continues to be, a long and intricate one. Books like this one keep the veteran engineer and student, alike, up to date on current trends in the technology and offer a reference for the industry for its practical applications. Energy optimization and consumption prediction are necessary to prevent energy waste, schedule energy usage, and reduce the cost. Today, smart computing technologies are slowly replacing the traditional computational methods in energy optimization, consumption, scheduling, and usage. Smart computing is an important core technology in today’s scientific and engineering environment. Smart computation techniques such as artificial intelligence, machine learning, deep learning and Internet of Things (IoT) are the key role players in emerging technologies across different applications, industries, and other areas. These newer, smart computation techniques are incorporated with traditional computation and scheduling methods to reduce power usage in areas such as distributed environment, healthcare, smart cities, agriculture and various functional areas. The scope of this book is to bridge the gap between traditional power consumption methods and modern consumptions methods using smart computation methods. This book addresses the various limitations, issues and challenges of traditional energy consumption methods and provides solutions for various issues using modern smart computation technologies. These smart technologies play a significant role in power consumption, and they are cheaper compared to traditional technologies. The significant limitations of energy usage and optimizations are rectified using smart computations techniques, and the computation techniques are applied across a wide variety of industries and engineering areas. Valuable as reference for engineers, scientists, students, and other professionals across many areas, this is a must-have for any library.
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
Smart Energy Grid Engineering provides in-depth detail on the various important engineering challenges of smart energy grid design and operation by focusing on advanced methods and practices for designing different components and their integration within the grid. Governments around the world are investing heavily in smart energy grids to ensure optimum energy use and supply, enable better planning for outage responses and recovery, and facilitate the integration of heterogeneous technologies such as renewable energy systems, electrical vehicle networks, and smart homes around the grid. By looking at case studies and best practices that illustrate how to implement smart energy grid infrastructures and analyze the technical details involved in tackling emerging challenges, this valuable reference considers the important engineering aspects of design and implementation, energy generation, utilization and energy conservation, intelligent control and monitoring data analysis security, and asset integrity. - Includes detailed support to integrate systems for smart grid infrastructures - Features global case studies outlining design components and their integration within the grid - Provides examples and best practices from industry that will assist in the migration to smart grids
INTELLIGENT RENEWABLE ENERGY SYSTEMS This collection of papers on artificial intelligence and other methods for improving renewable energy systems, written by industry experts, is a reflection of the state of the art, a must-have for engineers, maintenance personnel, students, and anyone else wanting to stay abreast with current energy systems concepts and technology. Renewable energy is one of the most important subjects being studied, researched, and advanced in today’s world. From a macro level, like the stabilization of the entire world’s economy, to the micro level, like how you are going to heat or cool your home tonight, energy, specifically renewable energy, is on the forefront of the discussion. This book illustrates modelling, simulation, design and control of renewable energy systems employed with recent artificial intelligence (AI) and optimization techniques for performance enhancement. Current renewable energy sources have less power conversion efficiency because of its intermittent and fluctuating behavior. Therefore, in this regard, the recent AI and optimization techniques are able to deal with data ambiguity, noise, imprecision, and nonlinear behavior of renewable energy sources more efficiently compared to classical soft computing techniques. This book provides an extensive analysis of recent state of the art AI and optimization techniques applied to green energy systems. Subsequently, researchers, industry persons, undergraduate and graduate students involved in green energy will greatly benefit from this comprehensive volume, a must-have for any library. Audience Engineers, scientists, managers, researchers, students, and other professionals working in the field of renewable energy.
This book focus on key component required for building predictive maintenance model. The current trend of Maintenance 4.0 leans towards the preventive mechanism enabled by predictive approach and condition-based smart maintenance. The intelligent decision support, earlier detection of spare part failure, fatigue detection is the main slices of intelligent and predictive maintenance system (PMS) leading towards Maintenance 4.0 This book presents prominent use cases of mechanical engineering using PMS along with the benefits. Basic understanding of data preparation is required for development of any AI application; in view of this, the types of the data and data preparation processes, and tools are also presented in this book.
Smart grid (SG), also called intelligent grid, is a modern improvement of the traditional power grid that will revolutionize the way electricity is produced, delivered, and consumed. Studying key concepts such as advanced metering infrastructure, distribution management systems, and energy management systems will support the design of a cost-effective, reliable, and efficient supply system, and will create a real-time bidirectional communication means and information exchange between the consumer and the grid operator of electric power. Optimizing and Measuring Smart Grid Operation and Control is a critical reference source that presents recent research on the operation, control, and optimization of smart grids. Covering topics that include phase measurement units, smart metering, and synchrophasor technologies, this book examines all aspects of modern smart grid measurement and control. It is designed for engineers, researchers, academicians, and students.
This book emphasizes the role of micro-grid systems and connected networks for the strategic storage of energy through the use of information and communication techniques, big data, the cloud, and meta-heuristics to support the greed for artificial intelligence techniques in data and the implementation of global strategies to meet the challenges of the city in the broad sense. The intelligent management of renewable energy in the context of the energy transition requires the use of techniques and tools based on artificial intelligence (AI) to overcome the challenges of the intermittence of resources and the cost of energy. The advent of the smart city makes an increased call for the integration of artificial intelligence and heuristics to meet the challenge of the increasing migration of populations to the city, in order to ensure food, energy, and environmental security of the citizen of the city and his well-being. This book is intended for policymakers, academics, practitioners, and students. Several real cases are exposed throughout the book to illustrate the concepts and methods of the networks and systems presented. This book proposes the development of new technological innovations—mainly ICT—the concept of “Smart City” appears as a means of achieving more efficient and sustainable cities. The overall goal of the book is to develop a comprehensive framework to help public and private stakeholders make informed decisions on smart city investment strategies and develop skills for assessment and prioritization, including resolution of difficulties with deployment and reproducibility.
Applications of AI and IOT in Renewable Energy provides a future vision of unexplored areas and applications for Artificial Intelligence and Internet of Things in sustainable energy systems. The ideas presented in this book are backed up by original, unpublished technical research results covering topics like smart solar energy systems, intelligent dc motors and energy efficiency study of electric vehicles. In all these areas and more, applications of artificial intelligence methods, including artificial neural networks, genetic algorithms, fuzzy logic and a combination of the above in hybrid systems are included. This book is designed to assist with developing low cost, smart and efficient solutions for renewable energy systems and is intended for researchers, academics and industrial communities engaged in the study and performance prediction of renewable energy systems. - Includes future applications of AI and IOT in renewable energy - Based on case studies to give each chapter real-life context - Provides advances in renewable energy using AI and IOT with technical detail and data
The focus of this book is smart energy management with the recurring theme being the use of computational and data-driven methods that use requirements/measurement/monitoring data to drive actuation/control, optimization, and resource management. The computational perspective is applied to manage energy, with an emphasis on smart buildings and the smart electric grids.The book also presents computational thinking and techniques such as inferencing and learning for energy management. To this end, this book is designed to help understand the recent research trends in energy management, focusing specifically on the efforts to increase energy efficiency of buildings, campuses, and cities.
Introduction to AI techniques for Renewable Energy System Artificial Intelligence (AI) techniques play an essential role in modeling, analysis, and prediction of the performance and control of renewable energy. The algorithms used to model, control, or predict performances of the energy systems are complicated, involving differential equations, enormous computing power, and time requirements. Instead of complex rules and mathematical routines, AI techniques can learn critical information patterns within a multidimensional information domain. Design, control, and operation of renewable energy systems require a long-term series of meteorological data such as solar radiation, temperature, or wind data. Such long-term measurements are often non-existent for most of the interest locations or, wherever they are available, they suffer from several shortcomings, like inferior quality of data, and in-sufficient long series. The book focuses on AI techniques to overcome these problems. It summarizes commonly used AI methodologies in renewal energy, with a particular emphasis on neural networks, fuzzy logic, and genetic algorithms. It outlines selected AI applications for renewable energy. In particular, it discusses methods using the AI approach for prediction and modeling of solar radiation, seizing, performances, and controls of the solar photovoltaic (PV) systems. Features Focuses on a significant area of concern to develop a foundation for the implementation of renewable energy system with intelligent techniques Showcases how researchers working on renewable energy systems can correlate their work with intelligent and machine learning approaches Highlights international standards for intelligent renewable energy systems design, reliability, and maintenance Provides insights on solar cell, biofuels, wind, and other renewable energy systems design and characterization, including the equipment for smart energy systems This book, which includes real-life examples, is aimed at undergraduate and graduate students and academicians studying AI techniques used in renewal energy systems.