Download Free Hybrid Force Position Control In The Robot Tool Space Book in PDF and EPUB Free Download. You can read online Hybrid Force Position Control In The Robot Tool Space and write the review.

A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space control, stiffness control and impedance control are presented as the basic strategies for indirect force control; a key feature is the coverage of six-degree-of-freedom interaction tasks and manipulator kinematic redundancy. Then, direct force control strategies are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. Finally, advanced force and position control strategies are presented which include passivity-based, adaptive and output feedback control schemes. Remarkably, all control schemes are experimentally tested on a setup consisting of a seven-joint industrial robot with open control architecture and force/torque sensor. The topic of robot force control is not treated in depth in robotics textbooks, in spite of its crucial importance for practical manipulation tasks. In the few books addressing this topic, the material is often limited to single-degree-of-freedom tasks. On the other hand, several results are available in the robotics literature but no dedicated monograph exists. The book is thus aimed at filling this gap by providing a theoretical and experimental treatment of robot force control.
This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. It provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. The book includes many worked examples, examples illustrating all aspects of the theory, and problems.
"This book explores some of the most recent developments in robotic motion, artificial intelligence, and human-machine interaction, providing insight into a wide variety of applications and functional areas"--Provided by publisher.
Written by two of Europe's leading robotics experts, this book provides the tools for a unified approach to the modelling of robotic manipulators, whatever their mechanical structure. No other publication covers the three fundamental issues of robotics: modelling, identification and control. It covers the development of various mathematical models required for the control and simulation of robots.·World class authority·Unique range of coverage not available in any other book·Provides a complete course on robotic control at an undergraduate and graduate level
This book covers the most attractive problem in robot control, dealing with the direct interaction between a robot and a dynamic environment, including the human-robot physical interaction. It provides comprehensive theoretical and experimental coverage of interaction control problems, starting from the mathematical modeling of robots interacting with complex dynamic environments, and proceeding to various concepts for interaction control design and implementation algorithms at different control layers. Focusing on the learning principle, it also shows the application of new and advanced learning algorithms for robotic contact tasks.The ultimate aim is to strike a good balance between the necessary theoretical framework and practical aspects of interactive robots.
As the use and relevance of robotics for countless scientific purposes grows all the time, research into the many diverse elements of the subject becomes ever more important and in demand. This volume examines in depth the most topical, complex issues of modelling and identification in robotics. The book is divided into three main parts. The !first part is devoted to robot dynamics modelling and identification of robot and load parameters, incorporating friction torques, discussing identification schemes, and presenting simulations and experiment al results of robot and load dynamic parameters identification. A general concept of robot programming language for research and educational purposes is examined and there is a detailed outline of its basic structures along with hardware requirements, which both constitute an open robot controller architecture. Finally a hybrid controller is derived, and several experimental results of this system are outlined. This impressive discussion of the topic covers both the theoretical and practical, illustrated throughout by examples and experimental results, and will be of value to anyone researching or practising within the field of robotics, automation and system i dentification or to control engineers.
SYROCO'2003 covered areas and aspects of robot control Topics: Robot control techniques (adaptive, robust, learning) Modeling and identification Control of discrete / continuous-time robotic systems Non-holonomic robotic systems Intelligent control Control based on sensing Control design and architectures Force and compliance control Grasp control Flexible robots Micro robots Mobile robots Walking robots Humanoid robots Teleoperation and man / machine dynamic systems Multi-Robot-Systems, cooperative robots Applications: space, underwater, civil engineering, surgery, entertainment, mining, etc. *Provides the latest research on Robotics *Contains contributions written by experts in the field. *Part of the IFAC Proceedings Series which provides a comprehensive overview of the major topics in control engineering.
In this book we have grouped contributions in 28 chapters from several authors all around the world on the several aspects and challenges of research and applications of robots with the aim to show the recent advances and problems that still need to be considered for future improvements of robot success in worldwide frames. Each chapter addresses a specific area of modeling, design, and application of robots but with an eye to give an integrated view of what make a robot a unique modern system for many different uses and future potential applications. Main attention has been focused on design issues as thought challenging for improving capabilities and further possibilities of robots for new and old applications, as seen from today technologies and research programs. Thus, great attention has been addressed to control aspects that are strongly evolving also as function of the improvements in robot modeling, sensors, servo-power systems, and informatics. But even other aspects are considered as of fundamental challenge both in design and use of robots with improved performance and capabilities, like for example kinematic design, dynamics, vision integration.