Download Free Hybrid Computational Intelligence Book in PDF and EPUB Free Download. You can read online Hybrid Computational Intelligence and write the review.

Hybrid Computational Intelligence: Challenges and Utilities is a comprehensive resource that begins with the basics and main components of computational intelligence. It brings together many different aspects of the current research on HCI technologies, such as neural networks, support vector machines, fuzzy logic and evolutionary computation, while also covering a wide range of applications and implementation issues, from pattern recognition and system modeling, to intelligent control problems and biomedical applications. The book also explores the most widely used applications of hybrid computation as well as the history of their development. Each individual methodology provides hybrid systems with complementary reasoning and searching methods which allow the use of domain knowledge and empirical data to solve complex problems. - Provides insights into the latest research trends in hybrid intelligent algorithms and architectures - Focuses on the application of hybrid intelligent techniques for pattern mining and recognition, in big data analytics, and in human-computer interaction - Features hybrid intelligent applications in biomedical engineering and healthcare informatics
Hybrid Computational Intelligence: Challenges and Utilities is a comprehensive resource that begins with the basics and main components of computational intelligence. It brings together many different aspects of the current research on HCI technologies, such as neural networks, support vector machines, fuzzy logic and evolutionary computation, while also covering a wide range of applications and implementation issues, from pattern recognition and system modeling, to intelligent control problems and biomedical applications. The book also explores the most widely used applications of hybrid computation as well as the history of their development. Each individual methodology provides hybrid systems with complementary reasoning and searching methods which allow the use of domain knowledge and empirical data to solve complex problems.
This book is intended for specialists as well as students and graduate students in the field of artificial intelligence, robotics and information technology. It is will also appeal to a wide range of readers interested in expanding the functionality of artificial intelligence systems. One of the pressing problems of modern artificial intelligence systems is the development of integrated hybrid systems based on deep learning. Unfortunately, there is currently no universal methodology for developing topologies of hybrid neural networks (HNN) using deep learning. The development of such systems calls for the expansion of the use of neural networks (NS) for solving recognition, classification and optimization problems. As such, it is necessary to create a unified methodology for constructing HNN with a selection of models of artificial neurons that make up HNN, gradually increasing the complexity of their structure using hybrid learning algorithms.
Business-to-consumer (B2C) and consumer-to-consumer (C2C) e-commerce transactions, including social commerce, are rapidly expanding, although e-commerce is still small when compared to traditional business transactions. As the familiarity of making purchases using smart devices continues to expand, many global and regional investors hope to target the ASEAN region to tap into the rising digital market in this region. The Handbook of Research on Innovation and Development of E-Commerce and E-Business in ASEAN is an essential reference source that discusses economics, marketing strategies, and mobile payment systems, as well as digital marketplaces, communication technologies, and social technologies utilized for business purposes. Featuring research on topics such as business culture, mobile technology, and consumer satisfaction, this book is ideally designed for policymakers, financial managers, business professionals, academicians, students, and researchers.
This book describes the latest advances in fuzzy logic, neural networks and optimization algorithms, as well as their hybrid combinations, and their applications in areas such as: intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction, and optimization of complex problems. The book is divided into five main parts. The first part proposes new concepts and algorithms based on type-1 and type-2 fuzzy logic and their applications; the second explores new concepts and algorithms in neural networks and fuzzy logic applied to recognition. The third part examines the theory and practice of meta-heuristics in various areas of application, while the fourth highlights diverse applications of fuzzy logic, neural networks and hybrid intelligent systems in medical contexts. Finally, the fifth part focuses on applications of fuzzy logic, neural networks and meta-heuristics to robotics problems.
This book covers applications for hybrid artificial intelligence (AI) and Internet of Things (IoT) for integrated approach and problem solving in the areas of radiology, drug interactions, creation of new drugs, imaging, electronic health records, disease diagnosis, telehealth, and mobility-related problems in healthcare. The book discusses the convergence of AI and the hybrid approaches in healthcare which optimizes the possible solutions and better treatment. Internet of Things (IoT) in healthcare is the next-gen technologies which automate the healthcare facility by mobility solutions are discussed in detail. It also discusses hybrid AI with bio-inspired techniques, genetic algorithm, neuro-fuzzy algorithms, and soft computing approaches which significantly improves the prediction of critical cardiovascular abnormalities and other healthcare solutions to the ongoing challenging research.
Computational Intelligence: Concepts to Implementations provides the most complete and practical coverage of computational intelligence tools and techniques to date. This book integrates various natural and engineering disciplines to establish Computational Intelligence. This is the first comprehensive textbook on the subject, supported with lots of practical examples. It asserts that computational intelligence rests on a foundation of evolutionary computation. This refreshing view has set the book apart from other books on computational intelligence. This book lays emphasis on practical applications and computational tools, which are very useful and important for further development of the computational intelligence field. Focusing on evolutionary computation, neural networks, and fuzzy logic, the authors have constructed an approach to thinking about and working with computational intelligence that has, in their extensive experience, proved highly effective. The book moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific con. It explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation. It details the metrics and analytical tools needed to assess the performance of computational intelligence tools. The book concludes with a series of case studies that illustrate a wide range of successful applications. This book will appeal to professional and academic researchers in computational intelligence applications, tool development, and systems. - Moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific concepts and paradigms that inform the authors' methodologies - Explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation - Details the metrics and analytical tools needed to assess the performance of computational intelligence tools - Concludes with a series of case studies that illustrate a wide range of successful applications - Presents code examples in C and C++ - Provides, at the end of each chapter, review questions and exercises suitable for graduate students, as well as researchers and practitioners engaged in self-study
Computational Intelligence: An Introduction, Second Edition offers an in-depth exploration into the adaptive mechanisms that enable intelligent behaviour in complex and changing environments. The main focus of this text is centred on the computational modelling of biological and natural intelligent systems, encompassing swarm intelligence, fuzzy systems, artificial neutral networks, artificial immune systems and evolutionary computation. Engelbrecht provides readers with a wide knowledge of Computational Intelligence (CI) paradigms and algorithms; inviting readers to implement and problem solve real-world, complex problems within the CI development framework. This implementation framework will enable readers to tackle new problems without any difficulty through a single Java class as part of the CI library. Key features of this second edition include: A tutorial, hands-on based presentation of the material. State-of-the-art coverage of the most recent developments in computational intelligence with more elaborate discussions on intelligence and artificial intelligence (AI). New discussion of Darwinian evolution versus Lamarckian evolution, also including swarm robotics, hybrid systems and artificial immune systems. A section on how to perform empirical studies; topics including statistical analysis of stochastic algorithms, and an open source library of CI algorithms. Tables, illustrations, graphs, examples, assignments, Java code implementing the algorithms, and a complete CI implementation and experimental framework. Computational Intelligence: An Introduction, Second Edition is essential reading for third and fourth year undergraduate and postgraduate students studying CI. The first edition has been prescribed by a number of overseas universities and is thus a valuable teaching tool. In addition, it will also be a useful resource for researchers in Computational Intelligence and Artificial Intelligence, as well as engineers, statisticians, operational researchers, and bioinformaticians with an interest in applying AI or CI to solve problems in their domains. Check out http://www.ci.cs.up.ac.za for examples, assignments and Java code implementing the algorithms.
Soft Computing today is a very vast field whose extent is beyond measure. The boundaries of this magnificent field are spreading at an enormous rate making it possible to build computationally intelligent systems that can do virtually anything, even after considering the hostile practical limitations. Soft Computing, mainly comprising of Artificial Neural Networks, Evolutionary Computation, and Fuzzy Logic may itself be insufficient to cater to the needs of various kinds of complex problems. In such a scenario, we need to carry out amalgamation of same or different computing approaches, along with heuristics, to make fabulous systems for problem solving. There is further an attempt to make these computing systems as adaptable as possible, where the value of any parameter is set and continuously modified by the system itself. This book first presents the basic computing techniques, draws special attention towards their advantages and disadvantages, and then motivates their fusion, in a manner to maximize the advantages and minimize the disadvantages. Conceptualization is a key element of the book, where emphasis is on visualizing the dynamics going inside the technique of use, and hence noting the shortcomings. A detailed description of different varieties of hybrid and adaptive computing systems is given, paying special attention towards conceptualization and motivation. Different evolutionary techniques are discussed that hold potential for generation of fairly complex systems. The complete book is supported by the application of these techniques to biometrics. This not only enables better understanding of the techniques with the added application base, it also opens new dimensions of possibilities how multiple biometric modalities can be fused together to make effective and scalable systems.
This two-volume set LNCS 6691 and 6692 constitutes the refereed proceedings of the 11th International Work-Conference on Artificial Neural Networks, IWANN 2011, held in Torremolinos-Málaga, Spain, in June 2011. The 154 revised papers were carefully reviewed and selected from 202 submissions for presentation in two volumes. The first volume includes 69 papers organized in topical sections on mathematical and theoretical methods in computational intelligence; learning and adaptation; bio-inspired systems and neuro-engineering; hybrid intelligent systems; applications of computational intelligence; new applications of brain-computer interfaces; optimization algorithms in graphic processing units; computing languages with bio-inspired devices and multi-agent systems; computational intelligence in multimedia processing; and biologically plausible spiking neural processing.