Download Free Huygens Principle 1690 1990 Book in PDF and EPUB Free Download. You can read online Huygens Principle 1690 1990 and write the review.

Huygens: The Man Behind the Principle is the story of the great seventeenth-century Dutch mathematician and physicist, Christiaan Huygens (1629-1695). As the first complete biography ever written this book describes in detail how Huygens arrived at discoveries and inventions that are often wrongly ascribed to Newton. Huygens played a key role in the 'scientific revolution', and the Huygens Principle on the wave theory of light helped establish his reputation. The discovery of Saturn's rings and the invention of the pendulum clock made him so famous that he was invited to be the first director of the French Academy of Science, but his life as director teetered on the edge of powerlessness. Despite Huygens' many achievements no complete biography has previously been published in English. This book gives scientists and historians the opportunity to learn more about all aspects of Huygens' life while bringing his story to a wider audience.
The three volumes in the PRINCIPLES OF ELECTRON OPTICS Series constitute the first comprehensive treatment of electron optics in over forty years. While Volumes 1 and 2 are devoted to geometrical optics, Volume 3 is concerned with wave optics and effects due to wave length. Subjects covered include:Derivation of the laws of electron propagation from SchrUdinger's equationImage formation and the notion of resolutionThe interaction between specimens and electronsImage processingElectron holography and interferenceCoherence, brightness, and the spectral functionTogether, these works comprise a unique and informative treatment of the subject. Volume 3, like its predecessors, will provide readers with both a textbook and an invaluable reference source.
This newly corrected, highly acclaimed text offers intermediate-level juniors and first-year graduate students of physics a rigorous treatment of classical electromagnetics. The authors present a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism. Starting with a brief review of static electricity and magnetism, the treatment advances to examinations of multipole fields, the equations of Laplace and Poisson, dynamic electromagnetism, electromagnetic waves, reflection and refraction, and waveguides. Subsequent chapters explore retarded potentials and fields and radiation by charged particles; antennas; classical electron theory; interference and coherence; scalar diffraction theory and the Fraunhofer limit; Fresnel diffraction and the transition to geometrical optics; and relativistic electrodynamics. A basic knowledge of vector calculus and Fourier analysis is assumed, and several helpful appendices supplement the text. An extensive Solutions Manual is also available.
This 5,800-page encyclopedia surveys 100 generations of great thinkers, offering more than 2,000 detailed biographies of scientists, engineers, explorers and inventors who left their mark on the history of science and technology. This six-volume masterwork also includes 380 articles summarizing the time-line of ideas in the leading fields of science, technology, mathematics and philosophy.
This book focuses on computational methods to determine the dynamics of large-scale electromagnetic, acoustic, and mechanical systems, including those with many substructures and characterized by an extended range of scales. Examples include large naval and maritime vessels, aerospace vehicles, and densely packed microelectronic and optical integrated circuits (VLSI). The interplay of time and frequency-domain computational and experimental procedures was addressed, emphasizing their relationship and synergy, and indicating mathematics research opportunities.
This book provides the reader with basic tools to solve problems of electromagnetism in their natural functional frameworks thanks to modern mathematical methods: integral surface methods, and also semigroups, variational methods, etc., well adapted to a numerical approach.As examples of applications of these tools and concepts, we solve several fundamental problems of electromagnetism, stationary or time-dependent: scattering of an incident wave by an obstacle, bounded or not, by gratings; wave propagation in a waveguide, with junctions and cascades. We hope that mathematical notions will allow a better understanding of modelization in electromagnetism and emphasize the essential features related to the geometry and nature of materials.
Femtosecond optics involves the study of ultra-short pulses of light. Understanding the behaviour of these light pulses makes it possible to develop ultra-fast lasers with a wide range of applications in such areas as medical imaging, chemical analysis and micro-machining. Written by two leading experts in the field, this book reviews the theory of the interaction of femtosecond light pulses with matter, femtosecond lasers and laser systems, and the principles of femtosecond coherent spectroscopy of impurity amorphous media. - reviews the theory of the interaction of femtosecond light pulses with matter - Discusses femtosecond lasers and laser systems - Considers the principles of femtosecond coherent spectroscopy of impurity amorphous media
This volume is a useful introduction to the subject of Fourier Integral Operators and is based on the author’s classic set of notes. Covering a range of topics from Hörmander’s exposition of the theory, Duistermaat approaches the subject from symplectic geometry and includes application to hyperbolic equations (= equations of wave type) and oscillatory asymptotic solutions which may have caustics. This text is suitable for mathematicians and (theoretical) physicists with an interest in (linear) partial differential equations, especially in wave propagation, rep. WKB-methods.
Hans Duistermaat, an influential geometer-analyst, made substantial contributions to the theory of ordinary and partial differential equations, symplectic, differential, and algebraic geometry, minimal surfaces, semisimple Lie groups, mechanics, mathematical physics, and related fields. Written in his honor, the invited and refereed articles in this volume contain important new results as well as surveys in some of these areas, clearly demonstrating the impact of Duistermaat's research and, in addition, exhibiting interrelationships among many of the topics.