Download Free Humans With Media And The Reorganization Of Mathematical Thinking Book in PDF and EPUB Free Download. You can read online Humans With Media And The Reorganization Of Mathematical Thinking and write the review.

This book offers a new conceptual framework for reflecting on the role of information and communication technology in mathematics education. Discussion focuses on how computers, writing and oral discourse transform education at an epistemological as well as a political level. Building on examples, research and theory, the authors propose that knowledge is not constructed solely by humans, but by collectives of humans and technologies of intelligence.
This volume collects most recent work on the role of technology in mathematics education. It offers fresh insight and understanding of the many ways in which technological resources can improve the teaching and learning of mathematics. The first section of the volume focuses on the question how a proposed mathematical task in a technological environment can influence the acquisition of knowledge and what elements are important to retain in the design of mathematical tasks in computing environments. The use of white smart boards, platforms as Moodle, tablets and smartphones have transformed the way we communicate both inside and outside the mathematics classroom. Therefore the second section discussed how to make efficient use of these resources in the classroom and beyond. The third section addresses how technology modifies the way information is transmitted and how mathematical education has to take into account the new ways of learning through connected networks as well as new ways of teaching. The last section is on the training of teachers in the digital era. The editors of this volume have selected papers from the proceedings of the 65th, 66th and 67th CIEAEM conference, and invited the correspondent authors to contribute to this volume by discussing one of the four important topics. The book continues a series of sourcebooks edited by CIEAEM, the Commission Internationale pour l’Étude et l’Amélioration de l’Enseignement des Mathématiques / International Commission for the Study and Improvement of Mathematics Education.
This book adopts an interdisciplinary approach to investigate the development of mathematical reasoning in both children and adults and to show how understanding the learner’s cognitive processes can help teachers develop better strategies to teach mathematics. This contributed volume departs from the interdisciplinary field of psychology of mathematics education and brings together contributions by researchers from different fields and disciplines, such as cognitive psychology, neuroscience and mathematics education. The chapters are presented in the light of the three instances that permeate the entire book: the learner, the teacher, and the teaching and learning process. Some of the chapters analyse the didactic challenges that teachers face in the classroom, such as how to interpret students' reasoning, the use of digital technologies, and their knowledge about mathematics. Other chapters examine students' opinions about mathematics, and others analyse the ways in which students solve situations that involve basic and complex mathematical concepts. The approaches adopted in the description and interpretation of the data obtained in the studies documented in this book point out the limits, the development, and the possibilities of students' thinking, and present didactic and cognitive perspectives to the learning scenarios in different school settings. Mathematical Reasoning of Children and Adults: Teaching and Learning from an Interdisciplinary Perspective will be a valuable resource for both mathematics teachers and researchers studying the development of mathematical reasoning in different fields, such as mathematics education, educational psychology, cognitive psychology, and developmental psychology.
*THIS BOOK WILL SOON BECOME AVAILABLE AS OPEN ACCESS BOOK* This book examines multiple facets of language diversity and mathematics education. It features renowned authors from around the world and explores the learning and teaching of mathematics in contexts that include multilingual classrooms, indigenous education, teacher education, blind and deaf learners, new media and tertiary education. Each chapter draws on research from two or more countries to illustrate important research findings, theoretical developments and practical strategies. This open access book examines multiple facets of language diversity
The innovative volume seeks to broaden the scope of research on mathematical problem solving in different educational environments. It brings together contributions not only from leading researchers, but also highlights collaborations with younger researchers to broadly explore mathematical problem-solving across many fields: mathematics education, psychology of education, technology education, mathematics popularization, and more. The volume’s three major themes—technology, creativity, and affect—represent key issues that are crucially embedded in the activity of problem solving in mathematics teaching and learning, both within the school setting and beyond the school. Through the book’s new pedagogical perspectives on these themes, it advances the field of research towards a more comprehensive approach on mathematical problem solving. Broadening the Scope of Research on Mathematical Problem Solving will prove to be a valuable resource for researchers and teachers interested in mathematical problem solving, as well as researchers and teachers interested in technology, creativity, and affect.
This is the eighth edition of the four-yearly review of mathematics education research in Australasia. Commissioned by the Mathematics Education Research Group of Australasia (MERGA), this review critiques the most current Australasian research in mathematics education in the four years from 2008-2011. The main objective of this review is to celebrate and recognise significant findings; highlight relationships between research; identify themes; and forecast further research directions. This theme-based review has produced a comprehensive analysis of Australasian research in a politically challenging time—producing a manuscript with implications for a wider, international, audience. As the 2009 Felix Klein medal winner Gilah Leder states: A substantial body of research is captured in the chapters of this review. It encompasses the labours of a community of active researchers, with varied interests and diverse theoretical perspectives. Some of the issues explored in the period covered by this volume clearly resonate with questions and concerns particularly pertinent to the changing educational environment; others are more aptly described as continuing or renewed explorations of areas of long standing concern.
This book develops the theoretical perspective on visuospatial reasoning in ecocultural contexts, granting insights on how the language, gestures, and representations of different cultures reflect visuospatial reasoning in context. For a number of years, two themes in the field of mathematics education have run parallel with each other with only a passing acquaintance. These two areas are the psychological perspective on visuospatial reasoning and ecocultural perspectives on mathematics education. This volume examines both areas of research and explores the intersection of these powerful ideas. In addition, there has been a growing interest in sociocultural aspects of education and in particular that of Indigenous education in the field of mathematics education. There has not, however, been a sound analysis of how environmental and cultural contexts impact visuospatial reasoning, although it was noted as far back as the 1980s when Alan Bishop developed his duality of visual processing and interpreting visual information. This book provides this analysis and in so doing not only articulates new and worthwhile lines of research, but also uncovers and makes real a variety of useful professional approaches in teaching school mathematics. With a renewed interest in visuospatial reasoning in the mathematics education community, this volume is extremely timely and adds significantly to current literature on the topic.
This survey addresses the use of technology in upper secondary mathematics education from four points of view: theoretical analysis of epistemological and cognitive aspects of activity in new technology mediated learning environments, the changes brought by technology in the interactions between environment, students and teachers, the interrelations between mathematical activities and technology, skills and competencies that must be developed in teacher education. Research shows that the use of some technologies may deeply change the solving processes and contribute to impact the learning processes. The questions are which technologies to choose for which purposes, and how to integrate them, so as to maximize all students’ agency. In particular the role of the teacher in classrooms and the content of teacher education programs are critical for taking full advantage of technology in teaching practice.
This book contributes to both mathematical problem solving and the communication of mathematics by students, and the role of personal and home technologies in learning beyond school. It does this by reporting on major results and implications of the Problem@Web project that investigated youngsters’ mathematical problem solving and, in particular, their use of digital technologies in tackling, and communicating the results of their problem solving, in environments beyond school. The book has two focuses: Mathematical problem solving skills and strategies, forms of representing and expressing mathematical thinking, technological-based solutions; and students ́ and teachers ́ perspectives on mathematics learning, especially school compared to beyond-school mathematics.