Download Free Human Stem Cell Toxicology Book in PDF and EPUB Free Download. You can read online Human Stem Cell Toxicology and write the review.

The advances of live cell video imaging and high-throughput technologies for functional and chemical genomics provide unprecedented opportunities to understand how biological processes work in subcellularand multicellular systems. The interdisciplinary research field of Video Bioinformatics is defined by BirBhanu as the automated processing, analysis, understanding, data mining, visualization, query-basedretrieval/storage of biological spatiotemporal events/data and knowledge extracted from dynamic imagesand microscopic videos. Video bioinformatics attempts to provide a deeper understanding of continuousand dynamic life processes.Genome sequences alone lack spatial and temporal information, and video imaging of specific moleculesand their spatiotemporal interactions, using a range of imaging methods, are essential to understandhow genomes create cells, how cells constitute organisms, and how errant cells cause disease. The bookexamines interdisciplinary research issues and challenges with examples that deal with organismal dynamics,intercellular and tissue dynamics, intracellular dynamics, protein movement, cell signaling and softwareand databases for video bioinformatics.Topics and Features• Covers a set of biological problems, their significance, live-imaging experiments, theory andcomputational methods, quantifiable experimental results and discussion of results.• Provides automated methods for analyzing mild traumatic brain injury over time, identifying injurydynamics after neonatal hypoxia-ischemia and visualizing cortical tissue changes during seizureactivity as examples of organismal dynamics• Describes techniques for quantifying the dynamics of human embryonic stem cells with examplesof cell detection/segmentation, spreading and other dynamic behaviors which are important forcharacterizing stem cell health• Examines and quantifies dynamic processes in plant and fungal systems such as cell trafficking,growth of pollen tubes in model systems such as Neurospora Crassa and Arabidopsis• Discusses the dynamics of intracellular molecules for DNA repair and the regulation of cofilintransport using video analysis• Discusses software, system and database aspects of video bioinformatics by providing examples of5D cell tracking by FARSIGHT open source toolkit, a survey on available databases and software,biological processes for non-verbal communications and identification and retrieval of moth imagesThis unique text will be of great interest to researchers and graduate students of Electrical Engineering,Computer Science, Bioengineering, Cell Biology, Toxicology, Genetics, Genomics, Bioinformatics, ComputerVision and Pattern Recognition, Medical Image Analysis, and Cell Molecular and Developmental Biology.The large number of example applications will also appeal to application scientists and engineers.Dr. Bir Bhanu is Distinguished Professor of Electrical & C omputer Engineering, Interim Chair of theDepartment of Bioengineering, Cooperative Professor of Computer Science & Engineering, and MechanicalEngineering and the Director of the Center for Research in Intelligent Systems, at the University of California,Riverside, California, USA.Dr. Prue Talbot is Professor of Cell Biology & Neuroscience and Director of the Stem Cell Center and Core atthe University of California Riverside, California, USA.
The volume brings together the once disparate knowledge of cultural techniques and thus provides an important reference work for industrial and academic toxicologists.
Almost daily, new technologies are being presented that move the field of human pluripotent stem cell research towards a future that may yield highly-effective, personalized medical treatments. Three enabling technologies at hand for human PSCs are 1) directed reprogramming of somatic cells, which eliminate many of the ethical issues associated with the derivation and use of human PSCs, increase genetic diversity of the available human PSC lines, and give rise to better in vitro human disease models; 2) the discovery that a Rho-associated protein Kinase (ROCK) inhibitor allows for efficient single cell passaging and cryopreservation, increasing the efficiency and reliability of hPSC culture; and 3) defined, animal-component-free media, which lay the groundwork for simplified scale-up for therapeutic applications, differentiation protocols, and toxicology screens. The aforementioned technologies can be found in Human Pluripotent Stem Cells: Methods and Protocols, a compilation of 33 detailed protocols in six categories of PSC research that cover laboratory essentials and the derivation of new PSC lines, including induced PSC lines, as well as their growth, maintenance, characterization, genetic manipulation, and differentiation. Written in the successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Human Pluripotent Stem Cells: Methods and Protocols serves as an ideal guide to scientists conducting their own pluripotent cell research programs and makes great strides towards furthering human knowledge and, ultimately, improving the human condition.
The series Advances in Stem Cell Biology is a timely and expansive collection of comprehensive information and new discoveries in the field of stem cell biology. iPSCs from Diverse Species, Volume 2 addresses how induced pluripotent stem cells (iPSCs) can be derived from different species. The volume teaches the reader about modern state-of-the-art methodologies to derive iPSCs from distinct species. This volume will cover how to derive iPSCs from species like nonhuman primates, horses, dogs, pigs, rats, rabbits, and others. It also discusses the importance of iPSCs in species conservation. Detailed description on methods used to obtain iPSCs from humans and other species expands the knowledge and understanding of stem cell biology and provides a potent tool to model diseases. The volume is written for researchers and scientists in stem cell biology, and regenerative medicine and is contributed by world-renowned authors in the field. - Provides overview of the fast-moving field of iPSC technology - Covers iPCSs from the following species: humans, monkeys, horses, dogs, pigs, rats, rabbits, and more - Consists of contributions from stem cell leaders around the world
Toxicity against tissue stem cells (TSCs) is a major problem in drug development and environmental health science. Despite their essential function in all human cellular tissues, the nature of tissue stem cells is not fully understood. The small fraction of stem cells in tissues and the lack of specific biomarkers for their quantification present a formidable challenge to developing tools for their study and assays that can identify stem cell-toxic agents. Human Stem Cell Toxicology reveals TSC toxicity as a biomedical reality that is now well under siege by newly emerging ideas and technologies, despite these challenges. Chapters consider stem cell toxicity by environmental agents, pharmaceutical drug candidates, and marketed therapeutic medicines with adverse side effects. New insights to cellular, molecular, biochemical and chemical mechanisms of human tissue stem cell toxicity are brought together. Experimental and theoretical treatments are of specific topics, including approaches to monitoring TSC function, newly discovered TSC types and TSC toxicity resistance mechanisms are covered by expert authors. This book informs and champions the continued development of innovative technologies to predict the TSC toxicity of compounds before their use, whether in patients or the environment, by addressing emerging new cell-based approaches and concepts for technical innovation. This publication will be a useful reference for postgraduate students and researchers working in toxicology, pharmaceutical science, tissue cell biology and stem cell biology.
A discussion of all the key issues in the use of human pluripotent stem cells for treating degenerative diseases or for replacing tissues lost from trauma. On the practical side, the topics range from the problems of deriving human embryonic stem cells and driving their differentiation along specific lineages, regulating their development into mature cells, and bringing stem cell therapy to clinical trials. Regulatory issues are addressed in discussions of the ethical debate surrounding the derivation of human embryonic stem cells and the current policies governing their use in the United States and abroad, including the rules and conditions regulating federal funding and questions of intellectual property.
Toxicity against tissue stem cells (TSCs) is a major problem in drug development and environmental health science. Despite their essential function in all human cellular tissues, the nature of tissue stem cells is not fully understood. The small fraction of stem cells in tissues and the lack of specific biomarkers for their quantification present a formidable challenge to developing tools for their study and assays that can identify stem cell-toxic agents. Human Stem Cell Toxicology reveals TSC toxicity as a biomedical reality that is now well under siege by newly emerging ideas and technologies, despite these challenges. Chapters consider stem cell toxicity by environmental agents, pharmaceutical drug candidates, and marketed therapeutic medicines with adverse side effects. New insights to cellular, molecular, biochemical, and chemical mechanisms of human tissue stem cell toxicity are brought together. Experimental and theoretical treatments are of specific topics, including approaches to monitoring TSC function, newly discovered TSC types and TSC toxicity resistance mechanisms, are covered by expert authors. This book informs and champions the continued development of innovative technologies to predict the TSC toxicity of compounds before their use, whether in patients or the environment, by addressing emerging new cell-based approaches and concepts for technical innovation. This publication will be a useful reference for postgraduate students and researchers working in toxicology, pharmaceutical science, tissue cell biology and stem cell biology.
Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.
This manual is a comprehensive compilation of "methods that work" for deriving, characterizing, and differentiating hPSCs, written by the researchers who developed and tested the methods and use them every day in their laboratories. The manual is much more than a collection of recipes; it is intended to spark the interest of scientists in areas of stem cell biology that they may not have considered to be important to their work. The second edition of the Human Stem Cell Manual is an extraordinary laboratory guide for both experienced stem cell researchers and those just beginning to use stem cells in their work. - Offers a comprehensive guide for medical and biology researchers who want to use stem cells for basic research, disease modeling, drug development, and cell therapy applications - Provides a cohesive global view of the current state of stem cell research, with chapters written by pioneering stem cell researchers in Asia, Europe, and North America - Includes new chapters devoted to recently developed methods, such as iPSC technology, written by the scientists who made these breakthroughs
This volume presents up-to-date methods that allow primary stem cells from a variety of sources to be isolated, cultured in vitro, detected and measured for specific applications. These applications range from those in basic, stem cell and veterinary research to toxicology, cellular therapy and regenerative medicine. There is a slight bias towards the blood-forming system as more is known about the blood-forming or hematopoietic system than any other primary stem cell system. These unique properties and characteristics are discussed and examined, mostly at the cellular level and in detail in this book. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Stem Cell Protocols provides novices with the fundamentals necessary to develop new technologies necessary for basic and clinical research in the future, and will aid professionals in finding new methodologies to provide a wider viewpoint and an even greater scope for their own research.