Download Free Human Retrovirus Protocols Book in PDF and EPUB Free Download. You can read online Human Retrovirus Protocols and write the review.

A cutting-edge collection of basic and state-of-the-art methods optimized for investigating the molecular biology of this class of retrovirus. These readily reproducible techniques range from methods for the isolation and detection of human retroviruses to cutting-edge methods for exploring the interplay between the viruses and the host. Here, the researcher will find up-to-date techniques for the isolation and propagation of HIV, HTLV, and foamy virus from a variety of sources. There are also assays for determining the cell tropism of HIV-1, the coreceptor usage of HIV-1, and human gene expression with HIV-1 infection by microarrays, as well as for phenotyping HIV-1 infected monocytes and examining their fitness. Highlights include the detection and quantification of HIV-1 in resting CD4+, a new cloning system for making recombinent virus, cDNA microarrays, and the determination of genetic polymorphisms in two recently identified HIV-1 co-factors that are critical for HIV-1 infection.
The first book to specifically cover the molecular biology of retroviruses - of immense importance since the high profile of HIV. International contributors provide detailed reviews of the latest knowledge. An excellent text for both medical and non-medical researchers, it also serves as an illuminating introduction for scientists active in other areas.
1. Non-viral gene therapy / Sean M. Sullivan -- 2. Adenoviral vectors / Stuart A. Nicklin and Andrew H. Baker -- 3. Retroviral vectors and integration analysis / Cynthia C. Bartholomae [und weitere] -- 4. Lentiviral vectors / Janka Matrai, Marinee K.L. Chuah and Thierry VandenDriessche -- 5. Herpes simplex virus vectors / William F. Goins [und weitere] -- 6. Adeno-Associated Viral (AAV) vectors / Nicholas Muzyczka -- 7. Regulatory RNA in gene therapy / Alfred. S. Lewin -- 8. DNA integrating vectors (Transposon, Integrase) / Lauren E. Woodard and Michele P. Calos -- 9. Homologous recombination and targeted gene modification for gene therapy / Matthew Porteus -- 10. Gene switches for pre-clinical studies in gene therapy / Caroline Le Guiner [und weitere] -- 11. Gene therapy for central nervous system disorders / Deborah Young and Patricia A. Lawlor -- 12. Gene therapy of hemoglobinopathies / Angela E. Rivers and Arun Srivastava -- 13. Gene therapy for primary immunodeficiencies / Aisha Sauer, Barbara Cassani and Alessandro Aiuti -- 14. Gene therapy for hemophilia / David Markusic, Babak Moghimi and Roland Herzog -- 15. Gene therapy for obesity and diabetes / Sergei Zolotukhin and Clive H. Wasserfall -- 16. Gene therapy for Duchenne muscular dystrophy / Takashi Okada and Shin'ichi Takeda -- 17. Cancer gene therapy / Kirsten A.K. Weigel-Van Aken -- 18. Gene therapy for autoimmune disorders / Daniel F. Gaddy, Melanie A. Ruffner and Paul D. Robbins -- 19. Gene therapy for inherited metabolic storage diseases / Cathryn Mah -- 20. Retinal diseases / Shannon E. Boye, Sanford L. Boye and William W. Hauswirth -- 21. A brief guide to gene therapy treatments for pulmonary diseases / Ashley T. Martino, Christian Mueller and Terence R. Flotte -- 22. Cardiovascular disease / Darin J. Falk, Cathryn S. Mah and Barry J. Byrne
Cell gene engineering is emerging as a field with outstanding impact, not only in medicine/biology, but also, and perhaps most importantly, in agriculture and in all those food sciences involved in the fight against world hunger. Lentivirus vector-based technologies represent the last frontier in the development of powerful and reliable methods for both in vitro and in vivo gene transfer in eukaryotic animal cells. Although the design of lentivirus vectors is closely reminiscent of those already successfully applied to the construction of oncoretroviral vectors, some unique features, e.g., the ef- ciency in transducing both postmitotic and stem cells, render the use of lentivirus vectors invaluable. It has been a great pleasure to edit Lentivirus Gene Engineering Pro- cols, owing in part to the high level of enthusiasm that the authors dem- strated in contributing to this book. The fact that so many outstanding scientists engaged in lentivirus vector research have provided articles renders it so- thing more than a technical handbook. In addition to detailed descriptions of the most innovative methodologies, the reader may find very informative ov- views concerning both theoretical and practical aspects of the origin and the development of diverse lentivirus vector types. This, in my opinion, rep- sents a unique added value of this volume, which should help our work resist the passage of time, to which books such as this are particularly sensitive.
This book describes the role of the obligate inhabitants of all vertebrate genomes—endogenous retroviruses, especially those emerged in genomes rather recently, during primate evolution. It specially focuses on human endogenous retroviruses as well as other retroelements.
Thirty protocols by leading researchers describe in detail all the essential molecular methods for working with gene transfer systems, along with the methods for gene transfer to specific tissue types either in vivo or ex vivo. The easily reproducible methods range from those for specific viral and nonviral for both genetic and acquired diseases, to those concerned with gene delivery to particular tissues. Methods for applying specific therapeutic systems, such as ribozymes and tumor supressor genes for the treatment of AIDS and cancer, are also included in this authoritative collection.
B-lymphocyte development and function remains an exciting area of research for those interested in the physiology and pathology of the immune system in higher animals. While recent advances in genetics and cellular and molecular biology have provided a large spectrum of powerful new experimental tools in this field, it is both time consuming and often very difficult for a student or just any bench-side worker to identify a reliable experimental protocol in the ocean of the literature. The aim of B Cell Protocols is to provide a collection of diverse protocols ranging from the latest inventions and applications to some classic, but still frequently used methods in B-cell biology. The authors of the various chapters are all highly qualified scientists who are either the inventors or expert users of these methods. Their extensive experience in mastering a particular method provides not only the step-by-step details of a reproducible protocol, but also useful troubleshooting tips that readers will appreciate in their daily work. We hope that this book will be helpful for both beginning and experienced researchers in the field in designing or modifying an experimental approach, and exploring a biological question from multiple angles.
On July 22, 2009, a special meeting was held with twenty-four leading scientists at the National Institutes of Health to discuss early findings that a newly discovered retrovirus was linked to chronic fatigue syndrome (CFS), prostate cancer, lymphoma, and eventually neurodevelopmental disorders in children. When Dr. Judy Mikovits finished her presentation the room was silent for a moment, then one of the scientists said, “Oh my God!” The resulting investigation would be like no other in science. For Dr. Mikovits, a twenty-year veteran of the National Cancer Institute, this was the midpoint of a five-year journey that would start with the founding of the Whittemore-Peterson Institute for Neuro-Immune Disease at the University of Nevada, Reno, and end with her as a witness for the federal government against her former employer, Harvey Whittemore, for illegal campaign contributions to Senate Majority Leader Harry Reid. On this journey Dr. Mikovits would face the scientific prejudices against CFS, wander into the minefield that is autism, and through it all struggle to maintain her faith in God and the profession to which she had dedicated her life. This is a story for anybody interested in the peril and promise of science at the very highest levels in our country.
In Natural Killer Cell Protocols: Cellular and Molecular Methods, Kerry S. Campbell and Marco Colonna have assembled a comprehensive collection of readily reproducible methods designed to study natural killer (NK) cells from the broadest variety of viewpoints. These include not only classic techniques, but also new approaches to standard methods, newly evolved techniques that have become valuable for specific applications, and unique models for manipulating and studying NK cells. Among the advanced methods covered are those for in vitro transendothelial migration, in vivo detection of cells migrating into tumors, immunofluorescence staining of intracellular cytokines, and in vitro NK cell development. Valuable techniques for specific applications include vaccinia virus protein expression, soluble KIR-Fc fusions for HLA class I binding assays, calcium mobilization in cell conjugates, and identification of heterodimeric receptor complexes using cDNA library expression cloning. No less important are accounts of such classic methods as hybrid resistance, ADCC, viral defense, target cell cytotoxicity assays, cloning and culturing, tumor immunotherapy, and generation of HLA class I transfected target cells. Natural Killer Cell Protocols: Cellular and Molecular Methods offers immunologists, cancer researchers, virologists, and cell biologists today's most comprehensive collection of both established and cutting-edge techniques, methods that will contribute significantly to advancing our understanding of this fascinating and critically important class of cells.
Fenner and White's Medical Virology, Fifth Edition provides an integrated view of related sciences, from cell biology, to medical epidemiology and human social behavior. The perspective represented by this book, that of medical virology as an infectious disease science, is meant to provide a starting point, an anchor, for those who must relate the subject to clinical practice, public health practice, scholarly research, and other endeavors. The book presents detailed exposition on the properties of viruses, how viruses replicate, and how viruses cause disease. These chapters are then followed by an overview of the principles of diagnosis, epidemiology, and how virus infections can be controlled. The first section concludes with a discussion on emergence and attempts to predict the next major public health challenges. These form a guide for delving into the specific diseases of interest to the reader as described in Part II. This lucid and concise, yet comprehensive, text is admirably suited to the needs of not only advanced students of science and medicine, but also postgraduate students, teachers, and research workers in all areas of virology. - Features updated and expanded coverage of pathogenesis and immunity - Contains the latest laboratory diagnostic methods - Provides insights into clinical features of human viral disease, vaccines, chemotherapy, epidemiology, and control