Download Free Human Milk Biochemistry And Infant Formula Manufacturing Technology Book in PDF and EPUB Free Download. You can read online Human Milk Biochemistry And Infant Formula Manufacturing Technology and write the review.

Since infant formula substitutes for human milk, its composition must match that of human milk as closely as possible. Quality control of infant formula is also essential to ensure product safety, as infants are particularly vulnerable food consumers. This book reviews the latest research into human milk biochemistry and best practice in infant formula processing technology and quality control.
Human Milk Biochemistry and Infant Formula Manufacturing Technology, Second Edition covers the history of bottle feeding, its advantages and disadvantages when compared with breast-feeding, human milk biochemistry, trends and new developments in infant formula formulation and manufacturing, and best practices in infant formula processing technology and quality control. The book also covers human milk proteomics as a new, separate chapter and provides additional information on infant formula clinical trial guidelines. In addition, the book includes information about the formulation and processing of premature and low birth weight infant formula. This book is sure to be a welcome resource for professionals in the food and infant formula industry, academics and graduate students in fields like nutrition, food sciences, or nursing, nutritionists and health professionals, government officials working in relevant departments, and finally, anyone interested in human milk and infant formula. - Reviews both human milk biochemistry and infant formula processing technology for broad coverage - Features a comprehensive review on the human milk protein profile using proteomics technology - Contains information on infant formula processing technology - Provides guidelines on infant formula clinical trials and related topics
An up-to-date overview of the dynamic field of whey protein utilization Whey Protein Production, Chemistry, Functionality and Applications explores the science and technology behind the rapidly increasing popularity of this most versatile of dairy by-products. With its richly nutritious qualities, whey protein has been widely used in the food industry for many years. The last decade has, however, seen manufacturers develop many innovative and exciting new applications for it, both in food and other areas. Taking account of these advances, this insightful work offers a full explanation of the technological and chemical breakthroughs that have made whey protein more in-demand than ever before. Topics covered include manufacturing technologies, thermal and chemical modifications, non-food uses, denaturation and interactions, and more. In its broad scope, the book encompasses: An up-to-date overview of recent developments and new applications Breakdowns of the chemical, nutritional, and functional properties of whey protein Commentary on the current and future outlooks of the whey protein market Examinations of the methods and manufacturing technologies that enable whey protein recovery A full guide to the numerous applications of whey protein in food production and other industries Whey Protein Production, Chemistry, Functionality and Applications is an unparalleled source of information on this highly adaptable and much sought-after commodity, and is essential reading for food and dairy scientists, researchers and graduate students, and professionals working in the food formulation and dairy processing industries.
THE ONLY SINGLE-SOURCE GUIDE TO THE LATEST SCIENCE, NUTRITION, AND APPLICATIONS OF ALL THE NON-BOVINE MILKS CONSUMED AROUND THE WORLD Featuring contributions by an international team of dairy and nutrition experts, this second edition of the popular Handbook of Milk of Non-Bovine Mammals provides comprehensive coverage of milk and dairy products derived from all non-bovine dairy species. Milks derived from domesticated dairy species other than the cow are an essential dietary component for many countries around the world. Especially in developing and under-developed countries, milks from secondary dairy species are essential sources of nutrition for the humanity. Due to the unavailability of cow milk and the low consumption of meat, the milks of non-bovine species such as goat, buffalo, sheep, horse, camel, Zebu, Yak, mare and reindeer are critical daily food sources of protein, phosphate and calcium. Furthermore, because of hypoallergenic properties of certain species milk including goats, mare and camel are increasingly recommended as substitutes in diets for those who suffer from cow milk allergies. This book: Discusses key aspects of non-bovine milk production, including raw milk production in various regions worldwide Describes the compositional, nutritional, therapeutic, physio-chemical, and microbiological characteristics of all non-bovine milks Addresses processing technologies as well as various approaches to the distribution and consumption of manufactured milk products Expounds characteristics of non-bovine species milks relative to those of human milk, including nutritional, allergenic, immunological, health and cultural factors. Features six new chapters, including one focusing on the use of non-bovine species milk components in the manufacture of infant formula products Thoroughly updated and revised to reflect the many advances that have occurred in the dairy industry since the publication of the acclaimed first edition, Handbook of Milk of Non-Bovine Mammals, 2nd Edition is an essential reference for dairy scientists, nutritionists, food chemists, animal scientists, allergy specialists, health professionals, and allied professionals.
Milk is nature’s most complete food, and dairy products are considered to be the most nutritious foods of all. The traditional view of the role of milk has been greatly expanded in recent years beyond the horizon of nutritional subsistence of infants: it is now recognized to be more than a source of nutrients for the healthy growth of children and nourishment of adult humans. Alongside its major proteins (casein and whey), milk contains biologically active compounds, which have important physiological and biochemical functions and significant impacts upon human metabolism, nutrition and health. Many of these compounds have been proven to have beneficial effects on human nutrition and health. This comprehensive reference is the first to address such a wide range of topics related to milk production and human health, including: mammary secretion, production, sanitation, quality standards and chemistry, as well as nutrition, milk allergies, lactose intolerance, and the bioactive and therapeutic compounds found in milk. In addition to cow’s milk, the book also covers the milk of non-bovine dairy species which is of economic importance around the world. The Editors have assembled a team of internationally renowned experts to contribute to this exhaustive volume which will be essential reading for dairy scientists, nutritionists, food scientists, allergy specialists and health professionals.
Food Processing By-Products and their Utilization An in-depth look at the economic and environmental benefits that food companies can achieve—and the challenges and opportunities they may face—by utilizing food processing by-products Food Processing By-Products and their Utilization is the first book dedicated to food processing by-products and their utilization in a broad spectrum. It provides a comprehensive overview on food processing by-products and their utilization as source of novel functional ingredients. It discusses food groups, including cereals, pulses, fruits, vegetables, meat, dairy, marine, sugarcane, winery, and plantation by-products; addresses processing challenges relevant to food by-products; and delivers insight into the current state of art and emerging technologies to extract valuable phytochemicals from food processing by-products. Food Processing By-Products and their Utilization offers in-depth chapter coverage of fruit processing by-products; the application of food by-products in medical and pharmaceutical industries; prebiotics and dietary fibers from food processing by-products; bioactive compounds and their health effects from honey processing industries; advances in milk fractionation for value addition; seafood by-products in applications of biomedicine and cosmeticuals; food industry by-products as nutrient replacements in aquaculture diets and agricultural crops; regulatory and legislative issues for food waste utilization; and much more. The first reference text to bring together essential information on the processing technology and incorporation of by-products into various food applications Concentrates on the challenges and opportunities for utilizing by-products, including many novel and potential uses for the by-products and waste materials generated by food processing Focuses on the nutritional composition and biochemistry of by-products, which are key to establishing their functional health benefits as foods Part of the "IFST Advances in Food Science" series, co-published with the Institute of Food Science and Technology (UK) This bookserves as a comprehensive reference for students, educators, researchers, food processors, and industry personnel looking for up-to-date insight into the field. Additionally, the covered range of techniques for by-product utilization will provide engineers and scientists working in the food industry with a valuable resource for their work.
An up-to-date overview of the dynamic field of whey protein utilization Whey Protein Production, Chemistry, Functionality and Applications explores the science and technology behind the rapidly increasing popularity of this most versatile of dairy by-products. With its richly nutritious qualities, whey protein has been widely used in the food industry for many years. The last decade has, however, seen manufacturers develop many innovative and exciting new applications for it, both in food and other areas. Taking account of these advances, this insightful work offers a full explanation of the technological and chemical breakthroughs that have made whey protein more in-demand than ever before. Topics covered include manufacturing technologies, thermal and chemical modifications, non-food uses, denaturation and interactions, and more. In its broad scope, the book encompasses: An up-to-date overview of recent developments and new applications Breakdowns of the chemical, nutritional, and functional properties of whey protein Commentary on the current and future outlooks of the whey protein market Examinations of the methods and manufacturing technologies that enable whey protein recovery A full guide to the numerous applications of whey protein in food production and other industries Whey Protein Production, Chemistry, Functionality and Applications is an unparalleled source of information on this highly adaptable and much sought-after commodity, and is essential reading for food and dairy scientists, researchers and graduate students, and professionals working in the food formulation and dairy processing industries.
This book is the most comprehensive introductory text on the chemistry and biochemistry of milk. It provides a comprehensive description of the principal constituents of milk (water, lipids, proteins, lactose, salts, vitamins, indigenous enzymes) and of the chemical aspects of cheese and fermented milks and of various dairy processing operations. It also covers heat-induced changes in milk, the use of exogenous enzymes in dairy processing, principal physical properties of milk, bioactive compounds in milk and comparison of milk of different species. This book is designed to meet the needs of senior students and dairy scientists in general.
The field of infant nutrition and feeding has been a long-standing and permanent concern within the field of child health, given the crucial role it plays in the current and future health and development of individuals. Although optimal feeding practices are recognized to achieve greater well-being, growth, and child health, differences and gaps still persist. This book covers a variety of crucial topics related to infant nutrition and feeding, which have been grouped into four sections. The book comprises 16 chapters that address pertinent issues on infant feeding. It places a strong emphasis on the process of breastfeeding and human milk intake, while also acknowledging the challenges and necessity for coverage in the case of infant formula intake. Additionally, it provides an overview of feeding patterns and interventions to enhance nutritional outcomes in young children. The book aims to contribute to the clinical work of health professionals tasked with addressing the infant nutrition and feeding needs of children in various settings and circumstances.
With more than 12M tons of dairy powders produced each year at a global scale, the drying sector accounts to a large extent for the processing of milk and whey. It is generally considered that 40% of the dry matter collected overall ends up in a powder form. Moreover, nutritional dairy products presented in a dry form (eg, infant milk formulae) have grown quickly over the last decade, now accounting for a large share of the profit of the sector. Drying in the Dairy Industry: From Established Technologies to Advanced Innovations deals with the market of dairy powders issues, considering both final product and process as well as their interrelationships. It explains the different processing steps for the production of dairy powders including membrane, homogenisation, concentration and agglomeration processes. The book includes a presentation of the current technologies, the more recent development for each of them and their impact on the quality of the final powders. Lastly, one section is dedicated to recent innovations and methods directed to more sustainable processes, as well as latter developments at lab scale to go deeper in the understanding of the phenomena occurring during spray drying. Key Features: Presents state-of-the-art information on the production of a variety of different dairy powders Discusses the impact of processing parameters and drier design on the product quality such as protein denaturation and viability of probiotics Explains the impact of drying processes on the powder properties such as solubility, dispersibility, wettability, flowability, floodability, and hygroscopicity Covers the technology, modelling and control of the processing steps This book is a synthetic and complete reference work for researchers in academia and industry in order to encourage research and development and innovations in drying in the dairy industry.