Download Free Human In The Loop Control For Cooperative Human Robot Tasks Book in PDF and EPUB Free Download. You can read online Human In The Loop Control For Cooperative Human Robot Tasks and write the review.

Even with the advance of autonomous robotics and automation, many automated tasks still require human intervention or guidance to mediate uncertainties in the environment or to execute the complexities of a task that autonomous robots are not yet equipped to handle. As such, robot controllers are needed that utilize the strengths of both autonomous agents, adept at handling lower level control tasks, and humans, superior at handling higher-level cognitive tasks. To address this need, we develop a control theoretic framework that seeks to incorporate user commands such that user intention is preserved while an automated task is carried out by the controller. This is a novel approach in that system theoretic tools allow for analytic guarantees of feasibility and convergence to goal states which naturally lead to varying levels of autonomy. We develop a model predictive controller that takes human input, infers human intent, then applies a control that minimizes deviations from the intended human control while ensuring that the lower-level automated task is being completed. This control framework is then evaluated in a human operator study involving a shared control task with human guidance of a mobile robot for navigation. These theoretical and experimental results lay the foundation for applying this control method for human-robot cooperative control to actual human-robot tasks. Specifically, the control is applied to a Urban Search and Rescue robot task where the shared control of a quadruped rescue robot is needed to ensure static stability during human-guided leg placements in uneven terrain. This control framework is also extended to a multiple user and multiple agent system where the human operators control multiple agents such that the agents maintain a formation while allowing the human operators to manipulate the shape of the formation. User studies are also conducted to evaluate the control in multiple operator scenarios.
In the past years there has been considerable effort to move robots from industrial environments to our daily lives where they can collaborate and interact with humans to improve our life quality. One of the key challenges in this direction is to make a suitable robot control system that can adapt to humans and interactively learn from humans to facilitate the efficient and safe co-existence of the two. The applications of such robotic systems include: service robotics and physical human-robot collaboration, assistive and rehabilitation robotics, semi-autonomous cars, etc. To achieve the goal of integrating robotic systems into these applications, several important research directions must be explored. One such direction is the study of skill transfer, where a human operator’s skilled executions are used to obtain an autonomous controller. Another important direction is shared control, where a robotic controller and humans control the same body, tool, mechanism, car, etc. Shared control, in turn invokes very rich research questions such as co-adaptation between the human and the robot, where the two agents can benefit from each other’s skills or must adapt to each other’s behavior to achieve effective cooperative task executions. The aim of this Research Topic is to help bridge the gap between the state-of-the-art and above-mentioned goals through novel multidisciplinary approaches in human-in-the-loop robot control and learning.
Human-in-the-loop Learning and Control for Robot Teleoperation presents recent, research progress on teleoperation and robots, including human-robot interaction, learning and control for teleoperation with many extensions on intelligent learning techniques. The book integrates cutting-edge research on learning and control algorithms of robot teleoperation, neural motor learning control, wave variable enhancement, EMG-based teleoperation control, and other key aspects related to robot technology, presenting implementation tactics, adequate application examples and illustrative interpretations. Robots have been used in various industrial processes to reduce labor costs and improve work efficiency. However, most robots are only designed to work on repetitive and fixed tasks, leaving a gap with the human desired manufacturing effect. Introduces research progress and technical contributions on teleoperation robots, including intelligent human-robot interactions and learning and control algorithms for teleoperation Presents control strategies and learning algorithms to a teleoperation framework to enhance human-robot shared control, bi-directional perception and intelligence of the teleoperation system Discusses several control and learning methods, describes the working implementation and shows how these methods can be applied to a specific and practical teleoperation system
This book provides an overview of recent research developments in the automation and control of robotic systems that collaborate with humans. A measure of human collaboration being necessary for the optimal operation of any robotic system, the contributors exploit a broad selection of such systems to demonstrate the importance of the subject, particularly where the environment is prone to uncertainty or complexity. They show how such human strengths as high-level decision-making, flexibility, and dexterity can be combined with robotic precision, and ability to perform task repetitively or in a dangerous environment. The book focuses on quantitative methods and control design for guaranteed robot performance and balanced human experience from both physical human-robot interaction and social human-robot interaction. Its contributions develop and expand upon material presented at various international conferences. They are organized into three parts covering: one-human–one-robot collaboration; one-human–multiple-robot collaboration; and human–swarm collaboration. Individual topic areas include resource optimization (human and robotic), safety in collaboration, human trust in robot and decision-making when collaborating with robots, abstraction of swarm systems to make them suitable for human control, modeling and control of internal force interactions for collaborative manipulation, and the sharing of control between human and automated systems, etc. Control and decision-making algorithms feature prominently in the text, importantly within the context of human factors and the constraints they impose. Applications such as assistive technology, driverless vehicles, cooperative mobile robots, manufacturing robots and swarm robots are considered. Illustrative figures and tables are provided throughout the book. Researchers and students working in controls, and the interaction of humans and robots will learn new methods for human–robot collaboration from this book and will find the cutting edge of the subject described in depth.
Recent advances in RbD have identified a number of key issues for ensuring a generic approach to the transfer of skills across various agents and contexts. This book focuses on the two generic questions of what to imitate and how to imitate and proposes active teaching methods.
A comprehensive exploration of the control schemes of human-robot interactions In Human-Robot Interaction Control Using Reinforcement Learning, an expert team of authors delivers a concise overview of human-robot interaction control schemes and insightful presentations of novel, model-free and reinforcement learning controllers. The book begins with a brief introduction to state-of-the-art human-robot interaction control and reinforcement learning before moving on to describe the typical environment model. The authors also describe some of the most famous identification techniques for parameter estimation. Human-Robot Interaction Control Using Reinforcement Learning offers rigorous mathematical treatments and demonstrations that facilitate the understanding of control schemes and algorithms. It also describes stability and convergence analysis of human-robot interaction control and reinforcement learning based control. The authors also discuss advanced and cutting-edge topics, like inverse and velocity kinematics solutions, H2 neural control, and likely upcoming developments in the field of robotics. Readers will also enjoy: A thorough introduction to model-based human-robot interaction control Comprehensive explorations of model-free human-robot interaction control and human-in-the-loop control using Euler angles Practical discussions of reinforcement learning for robot position and force control, as well as continuous time reinforcement learning for robot force control In-depth examinations of robot control in worst-case uncertainty using reinforcement learning and the control of redundant robots using multi-agent reinforcement learning Perfect for senior undergraduate and graduate students, academic researchers, and industrial practitioners studying and working in the fields of robotics, learning control systems, neural networks, and computational intelligence, Human-Robot Interaction Control Using Reinforcement Learning is also an indispensable resource for students and professionals studying reinforcement learning.
As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be seen as cooperating to complete a task with some object of interest. Often these applications are in unstructured environments where many paths can accomplish the goal. This creates a need for the ability to communicate a preferred direction of motion between both participants in order to move in coordinated way. This communication method should be bidirectional to be able to fully utilize both the robot and human capabilities. Moreover, often in cooperative tasks between two humans, one human will operate as the leader of the task and the other as the follower. These roles may switch during the task as needed. The need for communication extends into this area of leader-follower switching. Furthermore, not only is there a need to communicate the desire to switch roles but also to control this switching process. Impedance control has been used as a way of dealing with some of the complexities of pHRI. For this investigation, it was examined if impedance control can be utilized as a way of communicating a preferred direction between humans and robots. The first set of experiments tested to see if a human could detect a preferred direction of a robot by grasping and moving an object coupled to the robot. The second set tested the reverse case if the robot could detect the preferred direction of the human. The ability to detect the preferred direction was shown to be up to 99% effective. Using these results, a control method to allow a human and robot to switch leader and follower roles during a cooperative task was implemented and tested. This method proved successful 84% of the time. This control method was refined using adaptive control resulting in lower interaction forces and a success rate of 95%.
The book Human-Robot Interaction - Perspectives and Applications highlights the latest developments and obstacles in the field of human-machine interaction, including collaborative and humanoid robots, symbiosis between humans and robots, human-human collaboration, and robotics. Human-robot interaction has immense potential in areas like healthcare, education, manufacturing, military, and space exploration. This volume consists of several chapters that explore various topics such as the use of robotic wheelchairs, deep neural networks for robot grasp recognition, materials and sensors required for human-robot interaction, the use of drone technology in agriculture, healthcare robots in smart hospitals, and more.
With the progress and development of human-robot systems, the coordination among humans, robots, and environments has become increasingly sophisticated. In this Research Topic, we focus on an important field in robotics and automation disciplines, which is commonly defined as behavior-assistant robots. The scope includes but is not limited to: (1) rehabilitation assistive devices, such as rigid/soft exoskeletons, prosthetic systems, orthoses, and intelligent wheelchairs; (2) intelligent medical systems, such as endoscopic robots, surgical robots, and the navigation systems; (3) industrial application devices, such as collaborative manipulators, load-bearing exoskeletons, supernumerary robotic limbs; (4) intelligent domestic devices, such as mobile robots, elderly-care robots, walking-aids robots and so on. The emergence of robot-assisted daily behaviors, based on aforementioned devices, is gradually becoming part of our social lives, which can improve weak motor abilities, enhance physical functionalities, and enable various other benefits.