Download Free How To Solve Mathematical Problems Book in PDF and EPUB Free Download. You can read online How To Solve Mathematical Problems and write the review.

Authored by a leading name in mathematics, this engaging and clearly presented text leads the reader through the tactics involved in solving mathematical problems at the Mathematical Olympiad level. With numerous exercises and assuming only basic mathematics, this text is ideal for students of 14 years and above in pure mathematics.
Examples help explain the seven basic mathematical problem-solving methods, including inference, classification of action sequences, working backward, and contradiction
Seven problem-solving techniques include inference, classification of action sequences, subgoals, contradiction, working backward, relations between problems, and mathematical representation. Also, problems from mathematics, science, and engineering with complete solutions.
This text on mathematical problem solving provides a comprehensive outline of "problemsolving-ology," concentrating on strategy and tactics. It discusses a number of standard mathematical subjects such as combinatorics and calculus from a problem solver's perspective.
Based on Stanford University's well-known competitive exam, this excellent mathematics workbook offers students at both high school and college levels a complete set of problems, hints, and solutions. 1974 edition.
A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.
This is a practical anthology of some of the best elementary problems in different branches of mathematics. Arranged by subject, the problems highlight the most common problem-solving techniques encountered in undergraduate mathematics. This book teaches the important principles and broad strategies for coping with the experience of solving problems. It has been found very helpful for students preparing for the Putnam exam.
This book is a rare resource consisting of problems and solutions similar to those seen in mathematics contests from around the world. It is an excellent training resource for high school students who plan to participate in mathematics contests, and a wonderful collection of problems that can be used by teachers who wish to offer their advanced students some challenging nontraditional problems to work on to build their problem solving skills. It is also an excellent source of problems for the mathematical hobbyist who enjoys solving problems on various levels.Problems are organized by topic and level of difficulty and are cross-referenced by type, making finding many problems of a similar genre easy. An appendix with the mathematical formulas needed to solve the problems has been included for the reader's convenience. We expect that this book will expand the mathematical knowledge and help sharpen the skills of students in high schools, universities and beyond.
Many books have been written on the theory of functional equations, but very few help readers solve functional equations in mathematics competitions and mathematical problem solving. This book fills that gap. Each chapter includes a list of problems associated with the covered material. These vary in difficulty, with the easiest being accessible to any high school student who has read the chapter carefully. The most difficult will challenge students studying for the International Mathematical Olympiad or the Putnam Competition. An appendix provides a springboard for further investigation of the concepts of limits, infinite series and continuity.
This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.