Download Free How To Produce Methanol From Coal Book in PDF and EPUB Free Download. You can read online How To Produce Methanol From Coal and write the review.

Owing to efforts and legislative action - initiated above all by the government of the United States - to use cleaner fuels and thus make a contribution towards a better environment, public attention is back again on using methanol in carbu rettor and diesel engines. Most prominent among the raw materials from which methanol can be produced is coal, whose deposits and resources are many times larger than those of liquid and gaseous hydrocarbons. This book deals with the production of methanol from coal. It describes both the individual steps that are required for this process and the essential ancillary units and offsites associated with the process itself . . It is not meant to inform the reader about the intricate details of the processes, which can much better be taken from the specialized literature that deals exclusively and in detail with them or from the well-known standard engineering books. Rather, this book is to give the reader an impression how manifold a field this is, how many process variations and combinations the designer of such plants has to consider in order to arrive at an optimum design in each particular case. Apart from the production of chemical-grade methanol, the book deals briefly also with fuel methanol production, i. e. with the production of alcohol mixes. One of the many possible routes from coal to methanol is illustrated by a process flow diagram, and a material and energy balance is compiled for this typical example.
The world is currently consuming about 85 million barrels of oil a day, and about two-thirds as much natural gas equivalent, both derived from non-renewable natural sources. In the foreseeable future, our energy needs will come from any available alternate source. Methanol is one such viable alternative, and also offers a convenient solution for efficient energy storage on a large scale. In this updated and enlarged edition, renowned chemists discuss in a clear and readily accessible manner the pros and cons of humankind's current main energy sources, while providing new ways to overcome obstacles. Following an introduction, the authors look at the interrelationship of fuels and energy, and at the extent of our non-renewable fossil fuels. They also discuss the hydrogen economy and its significant shortcomings. The main focus is on the conversion of CO2 from industrial as well as natural sources into liquid methanol and related DME, a diesel fuel substitute that can replace LNG and LPG. The book is rounded off with an optimistic look at future possibilities. A forward-looking and inspiring work that vividly illustrates potential solutions to our energy and environmental problems.
Skyrocketing energy costs have spurred renewed interest in coal gasification. Currently available information on this subject needs to be updated, however, and focused on specific coals and end products. For example, carbon capture and sequestration, previously given little attention, now has a prominent role in coal conversion processes.This book approaches coal gasification and related technologies from a process engineering point of view, with topics chosen to aid the process engineer who is interested in a complete, coal-to-products system. It provides a perspective for engineers and scientists who analyze and improve components of coal conversion processes.The first topic describes the nature and availability of coal. Next, the fundamentals of gasification are described, followed by a description of gasification technologies and gas cleaning processes. The conversion of syngas to electricity, fuels and chemicals is then discussed. Finally, process economics are covered. Emphasis is given to the selection of gasification technology based on the type of coal fed to the gasifier and desired end product: E.g., lower temperature gasifiers produce substantial quantities of methane, which is undesirable in an ammonia synthesis feed. This book also reviews gasification kinetics which is informed by recent papers and process design studies by the US Department of Energy and other groups, and also largely ignored by other gasification books.• Approaches coal gasification and related technologies from a process engineering point of view, providing a perspective for engineers and scientists who analyze and improve components of coal conversion processes • Describes the fundamentals of gasification, gasification technologies, and gas cleaning processes • Emphasizes the importance of the coal types fed to the gasifier and desired end products • Covers gasification kinetics, which was largely ignored by other gasification books - Provides a perspective for engineers and scientists who analyze and improve components of the coal conversion processes - Describes the fundamentals of gasification, gasification technologies, and gas cleaning processes - Covers gasification kinetics, which was largely ignored by other gasification books
Methanol - The Chemical and Energy Feedstock of the Future offers a visionary yet unbiased view of methanol technology. Based on the groundbreaking 1986 publication "Methanol" by Friedrich Asinger, this book includes contributions by more than 40 experts from industry and academia. The authors and editors provide a comprehensive exposition of methanol chemistry and technology which is useful for a wide variety of scientists working in chemistry and energy related industries as well as academic researchers and even decision-makers and organisations concerned with the future of chemical and energy feedstocks.
This work details the technical, environmental and business aspects of current methanol production processes and presents recent developments concerning the use of methanol in transportation fuel and in agriculture. It is written by internationally renowned methanol experts from academia and industry.
The U.S. Department of Energy (DOE) was given a mandate in the 1992 Energy Policy Act (EPACT) to pursue strategies in coal technology that promote a more competitive economy, a cleaner environment, and increased energy security. Coal evaluates DOE's performance and recommends priorities in updating its coal program and responding to EPACT. This volume provides a picture of likely future coal use and associated technology requirements through the year 2040. Based on near-, mid-, and long-term scenarios, the committee presents a framework for DOE to use in identifying R&D strategies and in making detailed assessments of specific programs. Coal offers an overview of coal-related programs and recent budget trends and explores principal issues in future U.S. and foreign coal use. The volume evaluates DOE Fossil Energy R&D programs in such key areas as electric power generation and conversion of coal to clean fuels. Coal will be important to energy policymakers, executives in the power industry and related trade associations, environmental organizations, and researchers.
Methanol: Science and Engineering provides a comprehensive review of the chemistry, properties, and current and potential uses and applications of methanol. Divided into four parts, the book begins with a detailed account of current production methods and their economics. The second part deals with the applications of methanol, providing useful insights into future applications. Modeling of the various reactor systems is covered in the next section, with final discussions in the book focusing on the economic and environmental impact of this chemical. Users will find this to be a must-have resource for all researchers and engineers studying alternative energy sources. - Provides the latest developments on methanol research - Reviews methanol production methods and their economics - Outlines the use of methanol as an alternative green transportation fuel - Includes new technologies and many new applications of methanol
This book provides an account of the state-of-the-art in thermochemical biomass conversion and arises from the third conference in a series sponsored by the International Energy Agency's Bioenergy Agreement. Fundamental and applied research topics are included, reflecting recent advances as well as demonstration and commercial innovation.