Download Free How Einstein Found His Field Equations Book in PDF and EPUB Free Download. You can read online How Einstein Found His Field Equations and write the review.

Einstein's field equations of gravitation are a core element of his general theory of relativity. In four short communications to the Prussian Academy of Sciences in Berlin in November 1015, we can follow the final steps toward these equations and the resulting theory's spectacular success in accounting for the anomalous motion of Mercury's perihelion. This source book provides an expert guide to these four groundbreaking papers. Following an introductory essay placing these papers in the context of the development of Einstein's theory, it presents and analyzes, in addition to the four papers of November 1915, a careful selection of (critical excerpts from) papers, letters, and manuscripts documenting the path that early on led Einstein to the field equations of the first November 1915 paper, but then took a turn away from them only to lead back to them in the end. Drawing on extensive research at the Einstein Papers Project and the Max Planck Institute for History of Science, this volume traces the intricate interplay between considerations of physics and considerations of mathematics that guided Einstein along this path. It thus presents a concise yet authoritative account of how Einstein found his field equations, affording readers who are prepared to immerse themselves in these intricacies a unique glimpse of Einstein at work at the height of his creative prowess. Highlights of this journey in Einstein's footsteps include the crucial pages (with detailed annotation) from the Zurich Notebook, the record of Einstein's early search for field equation with his mathematician friend Marcel Grossmann, and the Einstein-Besso manuscript, documenting Einstein's attempts with his friend and confidant Michele Besso to explain the Mercury anomaly on the basis of the equations that he and Grossmann had eventually settled on in the Zurich Notebook.
A completely revised and updated edition of this classic text, covering important new methods and many recently discovered solutions. This edition contains new chapters on generation methods and their application, classification of metrics by invariants, and treatments of homothetic motions and methods from dynamical systems theory. It also includes colliding waves, inhomogeneous cosmological solutions, and spacetimes containing special subspaces.
This four-volume work represents the most comprehensive documentation and study of the creation of general relativity. Einstein’s 1912 Zurich notebook is published for the first time in facsimile and transcript and commented on by today’s major historians of science. Additional sources from Einstein and others, who from the late 19th to the early 20th century contributed to this monumental development, are presented here in translation for the first time. The volumes offer detailed commentaries and analyses of these sources that are based on a close reading of these documents supplemented by interpretations by the leading historians of relativity.
This book serves two purposes. The authors present important aspects of modern research on the mathematical structure of Einstein's field equations and they show how to extract their physical content from them by mathematically exact methods. The essays are devoted to exact solutions and to the Cauchy problem of the field equations as well as to post-Newtonian approximations that have direct physical implications. Further topics concern quantum gravity and optics in gravitational fields. The book addresses researchers in relativity and differential geometry but can also be used as additional reading material for graduate students.
Since Einstein first described them nearly a century ago, gravitational waves have been the subject of more sustained controversy than perhaps any other phenomenon in physics. These as yet undetected fluctuations in the shape of space-time were first predicted by Einstein's general theory of relativity, but only now, at the dawn of the twenty-first century, are we on the brink of finally observing them. Daniel Kennefick's landmark book takes readers through the theoretical controversies and thorny debates that raged around the subject of gravitational waves after the publication of Einstein's theory. The previously untold story of how we arrived at a settled theory of gravitational waves includes a stellar cast from the front ranks of twentieth-century physics, including Richard Feynman, Hermann Bondi, John Wheeler, Kip Thorne, and Einstein himself, who on two occasions avowed that gravitational waves do not exist, changing his mind both times. The book derives its title from a famously skeptical comment made by Arthur Stanley Eddington in 1922--namely, that "gravitational waves propagate at the speed of thought." Kennefick uses the title metaphorically to contrast the individual brilliance of each of the physicists grappling with gravitational-wave theory against the frustratingly slow progression of the field as a whole. Accessibly written and impeccably researched, this book sheds new light on the trials and conflicts that have led to the extraordinary position in which we find ourselves today--poised to bring the story of gravitational waves full circle by directly confirming their existence for the very first time.
It is an ideal companion for courses such as mathematical methods of physics, classical mechanics, electricity and magnetism, and relativity.--Gary White, editor of The Physics Teacher "American Journal of Physics"
Accompanying DVD-ROM contains the electronic proceedings of the summer school on mathematical general relativity and global properties of solutions of Einstein's equations held at Cargèse, Corsica, France, July 20-Aug. 10, 2002.
These fourteen essays by leading historians and philosophers of science introduce the reader to the work of Albert Einstein. Following an introduction that places Einstein's work in the context of his life and times, the essays explain his main contributions to physics in terms that are accessible to a general audience, including special and general relativity, quantum physics, statistical physics, and unified field theory. The closing essays explore the relation between Einstein's work and twentieth-century philosophy, as well as his political writings.
Aimed at students and researchers entering the field, this pedagogical introduction to numerical relativity will also interest scientists seeking a broad survey of its challenges and achievements. Assuming only a basic knowledge of classical general relativity, the book develops the mathematical formalism from first principles, and then highlights some of the pioneering simulations involving black holes and neutron stars, gravitational collapse and gravitational waves. The book contains 300 exercises to help readers master new material as it is presented. Numerous illustrations, many in color, assist in visualizing new geometric concepts and highlighting the results of computer simulations. Summary boxes encapsulate some of the most important results for quick reference. Applications covered include calculations of coalescing binary black holes and binary neutron stars, rotating stars, colliding star clusters, gravitational and magnetorotational collapse, critical phenomena, the generation of gravitational waves, and other topics of current physical and astrophysical significance.
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.