Download Free Horocycle Dynamics Book in PDF and EPUB Free Download. You can read online Horocycle Dynamics and write the review.

View the abstract.
This volume contains the proceedings of the semester-long special program on Hyperbolic Dynamics, Large Deviations and Fluctuations, which was held from January-June 2013, at the Centre Interfacultaire Bernoulli, École Polytechnique Fédérale de Lausanne, Switzerland. The broad theme of the program was the long-term behavior of dynamical systems and their statistical behavior. During the last 50 years, the statistical properties of dynamical systems of many different types have been the subject of extensive study in statistical mechanics and thermodynamics, ergodic and probability theories, and some areas of mathematical physics. The results of this study have had a profound effect on many different areas in mathematics, physics, engineering and biology. The papers in this volume cover topics in large deviations and thermodynamics formalism and limit theorems for dynamic systems. The material presented is primarily directed at researchers and graduate students in the very broad area of dynamical systems and ergodic theory, but will also be of interest to researchers in related areas such as statistical physics, spectral theory and some aspects of number theory and geometry.
The theory of dynamical systems is a major mathematical discipline closely intertwined with all main areas of mathematics. It has greatly stimulated research in many sciences and given rise to the vast new area variously called applied dynamics, nonlinear science, or chaos theory. This introduction for senior undergraduate and beginning graduate students of mathematics, physics, and engineering combines mathematical rigor with copious examples of important applications. It covers the central topological and probabilistic notions in dynamics ranging from Newtonian mechanics to coding theory. Readers need not be familiar with manifolds or measure theory; the only prerequisite is a basic undergraduate analysis course. The authors begin by describing the wide array of scientific and mathematical questions that dynamics can address. They then use a progression of examples to present the concepts and tools for describing asymptotic behavior in dynamical systems, gradually increasing the level of complexity. The final chapters introduce modern developments and applications of dynamics. Subjects include contractions, logistic maps, equidistribution, symbolic dynamics, mechanics, hyperbolic dynamics, strange attractors, twist maps, and KAM-theory.
This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The enlarged and revised second edition adds two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations.
This book stems from lectures that were delivered at the three-week Advanced Instructional School on Ergodic Theory and Dynamical Systems held at the Indian Institute of Technology Delhi, from 4–23 December 2017, with the support of the National Centre for Mathematics, National Board for Higher Mathematics, Department of Atomic Energy, Government of India. The book discusses various aspects of dynamical systems. Each chapter of this book specializes in one aspect of dynamical systems and thus begins at an elementary level and goes on to cover fairly advanced material. The book helps researchers be familiar with and navigate through different parts of ergodic theory and dynamical systems.
View the abstract.
This book gives a self-contained account of applications of category theory to the theory of representations of algebras. Its main focus is on 2-categorical techniques, including 2-categorical covering theory. The book has few prerequisites beyond linear algebra and elementary ring theory, but familiarity with the basics of representations of quivers and of category theory will be helpful. In addition to providing an introduction to category theory, the book develops useful tools such as quivers, adjoints, string diagrams, and tensor products over a small category; gives an exposition of new advances such as a 2-categorical generalization of Cohen-Montgomery duality in pseudo-actions of a group; and develops the moderation level of categories, first proposed by Levy, to avoid the set theoretic paradox in category theory. The book is accessible to advanced undergraduate and graduate students who would like to study the representation theory of algebras, and it contains many exercises. It can be used as the textbook for an introductory course on the category theoretic approach with an emphasis on 2-categories, and as a reference for researchers in algebra interested in derived equivalences and covering theory.
View the abstract.
​​​A memorial conference for Leon Ehrenpreis was held at Temple University, November 15-16, 2010. In the spirit of Ehrenpreis’s contribution to mathematics, the papers in this volume, written by prominent mathematicians, represent the wide breadth of subjects that Ehrenpreis traversed in his career, including partial differential equations, combinatorics, number theory, complex analysis and a bit of applied mathematics. With the exception of one survey article, the papers in this volume are all new results in the various fields in which Ehrenpreis worked . There are papers in pure analysis, papers in number theory, papers in what may be called applied mathematics such as population biology and parallel refractors and papers in partial differential equations. The mature mathematician will find new mathematics and the advanced graduate student will find many new ideas to explore.​A biographical sketch of Leon Ehrenpreis by his daughter, a professional journalist, enhances the memorial tribute and gives the reader a glimpse into the life and career of a great mathematician.
This volume is devoted to the "hyperbolic theory" of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less "significant" subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a saddle. If there are "sufficiently many" such trajectories and the phase space is compact, then although they "tend to diverge from one another" as it were, they "have nowhere to go" and their behaviour acquires a complicated intricate character. (In the physical literature one often talks about "chaos" in such situations. ) This type of be haviour would appear to be the opposite of the more customary and simple type of behaviour characterized by its own kind of stability and regularity of the motions (these words are for the moment not being used as a strict ter 1 minology but rather as descriptive informal terms). The ergodic properties of DS's with hyperbolic behaviour of trajectories (Bunimovich et al. 1985) have already been considered in Volume 2 of this series. In this volume we therefore consider mainly the properties of a topological character (see below 2 for further details).