Download Free Hormone Signaling Book in PDF and EPUB Free Download. You can read online Hormone Signaling and write the review.

Multicellular organisms require a means of intracellular communication to organize and develop the complex body plan that occurs during embryogenesis and then for cell and organ systems to access and respond to an ever changing environmental milieu. Mediators of this constant exchange of information are growth factors, neurotransmmitters, peptide and protein hormones which bind to cell surface receptors and transduce their signals from the extracellular space to the intracellular compartment. Via multiple signaling pathways, receptors of this general class affect growth, development and differentiation. Smaller hydrophobic signaling molecules, such as steroids and non-steroid hormones, vitamins and metabolic mediators interact with a large family of nuclear receptors. These receptors function as transcription factors affecting gene expression, to regulate the multiple aspects of animal and human physiology, including development, reproduction and homeostasis. The aim of this book is to cover various aspects of intracellular signaling involving hormone receptors.
Plant Hormones: Biosynthesis and Mechanisms of Action is based on research funded by the Chinese government's National Natural Science Foundation of China (NSFC). This book brings a fresh understanding of hormone biology, particularly molecular mechanisms driving plant hormone actions. With growing understanding of hormone biology comes new outlooks on how mankind values and utilizes the built-in potential of plants for improvement of crops in an environmentally friendly and sustainable manner. This book is a comprehensive description of all major plant hormones: how they are synthesized and catabolized; how they are perceived by plant cells; how they trigger signal transduction; how they regulate gene expression; how they regulate plant growth, development and defense responses; and how we measure plant hormones. This is an exciting time for researchers interested in plant hormones. Plants rely on a diverse set of small molecule hormones to regulate every aspect of their biological processes including development, growth, and adaptation. Since the discovery of the first plant hormone auxin, hormones have always been the frontiers of plant biology. Although the physiological functions of most plant hormones have been studied for decades, the last 15 to 20 years have seen a dramatic progress in our understanding of the molecular mechanisms of hormone actions. The publication of the whole genome sequences of the model systems of Arabidopsis and rice, together with the advent of multidisciplinary approaches has opened the door to successful experimentation on plant hormone actions. - Offers a comprehensive description of all major plant hormones including the recently discovered strigolactones and several peptide hormones - Contains a chapter describing how plant hormones regulate stem cells - Offers a fresh understanding of hormone biology, particularly molecular mechanisms driving plant hormone actions - Discusses the built-in potential of plants for improvement of crops in an environmentally friendly and sustainable manner
Multicellular organisms require a means of intracellular communication to organize and develop the complex body plan that occurs during embryogenesis and then for cell and organ systems to access and respond to an ever changing environmental milieu. Mediators of this constant exchange of information are growth factors, neurotransmmitters, peptide and protein hormones which bind to cell surface receptors and transduce their signals from the extracellular space to the intracellular compartment. Via multiple signaling pathways, receptors of this general class affect growth, development and differentiation. Smaller hydrophobic signaling molecules, such as steroids and non-steroid hormones, vitamins and metabolic mediators interact with a large family of nuclear receptors. These receptors function as transcription factors affecting gene expression, to regulate the multiple aspects of animal and human physiology, including development, reproduction and homeostasis. The aim of this book is to cover various aspects of intracellular signaling involving hormone receptors.
Cell to Cell Signalling: From Experiments to Theoretical Models is a collection of papers from a NATO Workshop conducted in Belgium in September 1988. The book discusses nerve cells and neural networks involved in signal transfers. The works of Hodgkin and Huxley presents a prototypic combination between experimental and theoretical approaches. The book discusses the coupling process found between secretory cells that modify their behavior. The text also analyzes morphogenesis and development, and then emphasizes the pattern formation found in Drosophila and in the amphibian embryo. The text also cite examples of immunological modeling that is related to the dynamics of immune networks based on idiotypic regulation. One paper analyzes the immune dynamism of HIV infection. The text notes that hormone signaling can be attributed as responsible for intercellular communication. Another paper examines how the dominant follicle in the ovarian cycle is selected, as well as the effectiveness of hormone secretion responsible for encoding the frequency of occurrence of periodic signals. The book also discusses heart signal sources such as cardiac dynamics and the response of periodically excited cardiac cells. The text can prove valuable for practioners in the field of neurology and cardiovascular medicine, and for researchers in molecular biology and molecular chemistry.
Bei vielen physiologischen und Entwicklungsprozessen sowie bei Stressreaktionen spielen Hormonsignale, die Pflanzen aussenden, eine große Rolle. Mit Aufkommen der neuen post-genomischen Molekulartechnologien sind auch unsere Möglichkeiten, die Wirkung von Hormonsignalen auf die Genexpression und adaptive Prozesse zu verstehen, heute einzigartig. Wenn wir die molekularen Grundlagen dieser Prozesse entschlüsseln, ergeben sich für die Entwicklung neuer Pflanzenbiotechnologien und verbesserter Varianten von Kulturpflanzen große Chancen. Die Themen dieses Buches legen den Schwerpunkt auf die Genomik und funktionale Aspekte der Genomik. Damit lassen sich globale Veränderungen und Veränderungen auf Ebene des gesamten Genoms unter spezifischen Stressbedingungen verstehen. Mit funktionalen Werkzeugen der Genomik kann der Mechanismus von Phytohormonsignalen in Verbindung mit den zugehörigen Zielgenen systematischer definiert werden. Die integrierte Analyse von Phytohormonsignalen bei einzelnen oder mehreren Stressbedingungen ist unter Umständen für die Entwicklung stresstoleranter Kulturpflanzen eine außergewöhnliche Möglichkeit. Mechanism of Plant Hormone Signaling Under Stress beschreibt die jüngsten Fortschritte und zeigt, wie heutige Erkenntnisse in der wissenschaftlichen Erforschung von Pflanzen und Kulturpflanzen Anwendung finden. Dieses Buch ist für Pflanzenbiologen, Biologen, die sich mit Stressfaktoren beschäftigen, Forscher im Bereich Pflanzenbiotechnologie, Studenten und Dozenten überaus nützlich.
Plant hormones play a crucial role in controlling the way in which plants grow and develop. While metabolism provides the power and building blocks for plant life, it is the hormones that regulate the speed of growth of the individual parts and integrate them to produce the form that we recognize as a plant. This book is a description of these natural chemicals: how they are synthesized and metabolized, how they act at both the organismal and molecular levels, how we measure them, a description of some of the roles they play in regulating plant growth and development, and the prospects for the genetic engineering of hormone levels or responses in crop plants. This is an updated revision of the third edition of the highly acclaimed text. Thirty-three chapters, including two totally new chapters plus four chapter updates, written by a group of fifty-five international experts, provide the latest information on Plant Hormones, particularly with reference to such new topics as signal transduction, brassinosteroids, responses to disease, and expansins. The book is not a conference proceedings but a selected collection of carefully integrated and illustrated reviews describing our knowledge of plant hormones and the experimental work that is the foundation of this information. The Revised 3rd Edition adds important information that has emerged since the original publication of the 3rd edition. This includes information on the receptors for auxin, gibberellin, abscisic acid and jasmonates, in addition to new chapters on strigolactones, the branching hormones, and florigen, the flowering hormone.
This revised new edition reviews the substantial advances in our understanding of the vital role of growth hormone (GH) in maintaining adult health, and the resulting disorders from GH deficiency. The first edition, published in 1996, provided a pioneering overview of the subject; this new edition provides an even more comprehensive account, fully updated with the latest research, clinical applications, and references. The therapeutic benefits of GH treatment in GH deficiency are thoroughly evaluated, including effects on metabolism, cardiac function, exercise performance, psychosocial aspects, and aging and gender-specific effects. This compilation by the world's leading experts covers clinical investigation, diagnosis and treatment issues, and encompasses new knowledge of the control and action of GH secretion. This volume is the most authoritative, comprehensive, and detailed account available and will be an essential source of reference for all endocrinologists.
Meristematic cells in plants become the many different types of cells found in a mature plant. This is achieved by a selective response to chemical signals both from neighbouring cells and distant tissues. It is these responses that shape the plant, its time of flowering, the sex of its flowers, its length of survival or progress to senescence and death. How do plants achieve this? This treatise addresses this question using well-chosen examples to illustrate the concept of target cells. The authors discuss how each cell has the ability to discriminate between different chemical signals, determining which it will respond to and which it will ignore. The regulation of gene expression through signal perception and signal transduction is at the core of this selectivity and the Target Cell concept. This volume will serve as a valuable reference for all researchers working in the field of plant developmental biology.
Plants are endowed with innate immune system, which acts as a surveillance system against possible attack by pathogens. Plant innate immune systems have high potential to fight against viral, bacterial, oomycete and fungal pathogens and protect the crop plants against wide range of diseases. However, the innate immune system is a sleeping system in unstressed healthy plants. Fast and strong activation of the plant immune responses aids the host plants to win the war against the pathogens. Plant hormone signaling systems including salicylate (SA), jasmonate (JA), ethylene (ET), abscisic acid (ABA), auxins, cytokinins, gibberellins and brassinosteroids signaling systems play a key role in activation of the sleeping immune systems. Suppression or induction of specific hormone signaling systems may result in disease development or disease resistance. Specific signaling pathway has to be activated to confer resistance against specific pathogen in a particular host. Two forms of induced resistance, systemic acquired resistance (SAR) and induced systemic resistance (ISR), have been recognized based on the induction of specific hormone signaling systems. Specific hormone signaling system determines the outcome of plant-pathogen interactions, culminating in disease development or disease resistance. Susceptibility or resistance against a particular pathogen is determined by the action of the signaling network. The disease outcome is often determined by complex network of interactions among multiple hormone signaling pathways. Manipulation of the complex hormone signaling systems and fine tuning the hormone signaling events would help in management of various crop diseases. The purpose of the book is to critically examine the potential methods to manipulate the multiple plant hormone signaling systems to aid the host plants to win the battle against pathogens.