Download Free Homoplasy Book in PDF and EPUB Free Download. You can read online Homoplasy and write the review.

Why do unrelated organisms sometimes appear almost identical in details of the anatomy, behavior, physiology, and ecology? Homoplasy assembles leaders in evolutionary biology to explore issues of parallelism, convergence, and reversals. This innovative book is certain to provoke discussion of homoplasy compelling evidence for particular theories of evolutionary change - The first book on this increasingly interesting subject - Includes authoritative treatments from leading experts expressing a variety of viewpoints
The major aim of this work is, to help clarify the interrelationships of catfishes, with major implications on the study of the general evolution of these fishes. A great part of this work, therefore, deals with a cladistic analysis of catfish higher-level phylogeny based on extensive morphological data, in which are included some terminal taxa not included in previous analyses, but principally a large number of characters traditionally excluded from those analyses, with particular attention being given to catfish morphology. This analysis gives particular importance to complex, integrated structures. It will be interest to students, ichthyologists and biologists working in evolution, taxonomy and phylogeny.
Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools provides a coherent and friendly treatment of bioinformatics for any student or scientist within biology who has not routinely performed bioinformatic analysis. The book discusses the relevant principles needed to understand the theoretical underpinnings of bioinformatic analysis and demonstrates, with examples, targeted analysis using freely available web-based software and publicly available databases. Eschewing non-essential information, the work focuses on principles and hands-on analysis, also pointing to further study options. - Avoids non-essential coverage, yet fully describes the field for beginners - Explains the molecular basis of evolution to place bioinformatic analysis in biological context - Provides useful links to the vast resource of publicly available bioinformatic databases and analysis tools - Contains over 100 figures that aid in concept discovery and illustration
The major aim of this work is, to help clarify the interrelationships of catfishes, with major implications on the study of the general evolution of these fishes. A great part of this work, therefore, deals with a cladistic analysis of catfish higher-level phylogeny based on extensive morphological data, in which are included some terminal taxa not
Bringing together conceptual obstacles and core concepts of evolutionary theory, this book presents evolution as straightforward and intuitive.
The application of molecular techniques is rapidly transforming the study of plant systematics. The precision they offer enables researchers to classify plants that have not been subject to rigorous classification before and thus allows them to obtain a clearer picture of evolutionary relationships. Plant Molecular Systematics is arranged both conceptually and phylogenetically to accommodate the interests not only of general systematists, but also those of people interested in a particular plant family. The first part discusses molecular sequencing; the second reviews restriction site analysis and the sequencing of mitochondrial DNA. A third section details the analysis of ribosomal DNA and chloroplast DNA. The following section introduces model studies involving well-studied families such as the Onagraceae, Compositae and Leguminosae. The book concludes with a section addressing theoretical topics such as data analysis and the question of morphological vs. molecular data.
Parsimony analysis (cladistics) has long been one of the most widely used methods of phylogenetic inference in the fields of systematic and evolutionary biology. Moreover it has mathematical attributes that lend itself for use with complex, genomic-scale data sets. This book demonstrates the potential that this powerful hierarchical data summarization method also has for both structural and functional comparative genomic research.
Can we can use the patterns and processes of convergent evolution to make inferences about universal laws of life, on Earth and elsewhere? In this book, Russell Powell investigates whether we can use the patterns and processes of convergent evolution to make inferences about universal laws of life, on Earth and elsewhere. Weaving together disparate philosophical and empirical threads, Powell offers the first detailed analysis of the interplay between contingency and convergence in macroevolution, as it relates to both complex life in general and cognitively complex life in particular. If the evolution of mind is not a historical accident, the product of convergence rather than contingency, then, Powell asks, is mind likely to be an evolutionarily important feature of any living world? Stephen Jay Gould argued for the primacy of contingency in evolution. Gould's “radical contingency thesis” (RCT) has been challenged, but critics have largely failed to engage with its core claims and theoretical commitments. Powell fills this gap. He first examines convergent regularities at both temporal and phylogenetic depths, finding evidence that both vindicates and rebuffs Gould's argument for contingency. Powell follows this partial defense of the RCT with a substantive critique. Among the evolutionary outcomes that might defy the RCT, he argues, cognition is particularly important—not only for human-specific issues of the evolution of intelligence and consciousness but also for the large-scale ecological organization of macroscopic living worlds. Turning his attention to complex cognitive life, Powell considers what patterns of cognitive convergence tell us about the nature of mind, its evolution, and its place in the universe. If complex bodies are common in the universe, might complex minds be common as well?
The study of evolution at the molecular level has given the subject of evolutionary biology a new significance. Phylogenetic 'trees' of gene sequences are a powerful tool for recovering evolutionary relationships among species, and can be used to answer a broad range of evolutionary and ecological questions. They are also beginning to permeate the medical sciences. In this book, the authors approach the study of molecular evolution with the phylogenetic tree as a central metaphor. This will equip students and professionals with the ability to see both the evolutionary relevance of molecular data, and the significance evolutionary theory has for molecular studies. The book is accessible yet sufficiently detailed and explicit so that the student can learn the mechanics of the procedures discussed. The book is intended for senior undergraduate and graduate students taking courses in molecular evolution/phylogenetic reconstruction. It will also be a useful supplement for students taking wider courses in evolution, as well as a valuable resource for professionals. First student textbook of phylogenetic reconstruction which uses the tree as a central metaphor of evolution. Chapter summaries and annotated suggestions for further reading. Worked examples facilitate understanding of some of the more complex issues. Emphasis on clarity and accessibility.