Download Free Homological Methods In Banach Space Theory Book in PDF and EPUB Free Download. You can read online Homological Methods In Banach Space Theory and write the review.

Approaches Banach space theory using methods from homological algebra, with concrete examples and proofs of many new and classical results.
A comprehensive overview of modern Banach space theory.
Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodým property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.
In recent years there has been a surge of profound new developments in various aspects of analysis whose connecting thread is the use of Banach space methods. Indeed, many problems seemingly far from the classical geometry of Banach spaces have been solved using Banach space techniques. This volume contains papers by participants of the conference "Banach Spaces and their Applications in Analysis", held in May 2006 at Miami University in Oxford, Ohio, in honor of Nigel Kalton's 60th birthday. In addition to research articles contributed by participants, the volume includes invited expository articles by principal speakers of the conference, who are leaders in their areas. These articles present overviews of new developments in each of the conference's main areas of emphasis, namely nonlinear theory, isomorphic theory of Banach spaces including connections with combinatorics and set theory, algebraic and homological methods in Banach spaces, approximation theory and algorithms in Banach spaces. This volume also contains an expository article about the deep and broad mathematical work of Nigel Kalton, written by his long time collaborator, Gilles Godefroy. Godefroy's article, and in fact the entire volume, illustrates the power and versatility of applications of Banach space methods and underlying connections between seemingly distant areas of analysis.
In recent years there has been a surge of profound new developments in various aspects of analysis whose connecting thread is the use of Banach space methods. Indeed, many problems seemingly far from the classical geometry of Banach spaces have been solved using Banach space techniques. This volume contains papers by participants of the conference "Banach Spaces and their Applications in Analysis", held in May 2006 at Miami University in Oxford, Ohio, in honor of Nigel Kalton's 60th birthday. In addition to research articles contributed by participants, the volume includes invited expository articles by principal speakers of the conference, who are leaders in their areas. These articles present overviews of new developments in each of the conference's main areas of emphasis, namely nonlinear theory, isomorphic theory of Banach spaces including connections with combinatorics and set theory, algebraic and homological methods in Banach spaces, approximation theory and algorithms in Banach spaces. This volume also contains an expository article about the deep and broad mathematical work of Nigel Kalton, written by his long time collaborator, Gilles Godefroy. Godefroy's article, and in fact the entire volume, illustrates the power and versatility of applications of Banach space methods and underlying connections between seemingly distant areas of analysis.
A pedagogical introduction to the key ideas and theoretical foundation of optimal mass transport for a graduate course or self-study.
A detailed introduction to cubic hypersurfaces, applying diverse techniques to a central class of algebraic varieties.
This up-to-date treatment of recent developments in geometric inverse problems introduces graduate students and researchers to an exciting area of research. With an emphasis on the two-dimensional case, topics covered include geodesic X-ray transforms, boundary rigidity, tensor tomography, attenuated X-ray transforms and the Calderón problem. The presentation is self-contained and begins with the Radon transform and radial sound speeds as motivating examples. The required geometric background is developed in detail in the context of simple manifolds with boundary. An in-depth analysis of various geodesic X-ray transforms is carried out together with related uniqueness, stability, reconstruction and range characterization results. Highlights include a proof of boundary rigidity for simple surfaces as well as scattering rigidity for connections. The concluding chapter discusses current open problems and related topics. The numerous exercises and examples make this book an excellent self-study resource or text for a one-semester course or seminar.
The first volume of a two-volume book offering a comprehensive account of the arithmetic theory of algebraic groups.
The first edition of this book provided the first systematic exposition of the arithmetic theory of algebraic groups. This revised second edition, now published in two volumes, retains the same goals, while incorporating corrections and improvements, as well as new material covering more recent developments. Volume I begins with chapters covering background material on number theory, algebraic groups, and cohomology (both abelian and non-abelian), and then turns to algebraic groups over locally compact fields. The remaining two chapters provide a detailed treatment of arithmetic subgroups and reduction theory in both the real and adelic settings. Volume I includes new material on groups with bounded generation and abstract arithmetic groups. With minimal prerequisites and complete proofs given whenever possible, this book is suitable for self-study for graduate students wishing to learn the subject as well as a reference for researchers in number theory, algebraic geometry, and related areas.