Download Free Homogeneous Spaces Of Nonpositive Curvature And Their Geodesic Flow Book in PDF and EPUB Free Download. You can read online Homogeneous Spaces Of Nonpositive Curvature And Their Geodesic Flow and write the review.

Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.
Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.
A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.
The aim of this book is to present the fundamental concepts and properties of the geodesic flow of a closed Riemannian manifold. The topics covered are close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane's formula that relates the topological entropy of the geodesic flow with the exponential growth rate of the average numbers of geodesic arcs between two points in the manifold. The material here can be reasonably covered in a one-semester course. I have in mind an audience with prior exposure to the fundamentals of Riemannian geometry and dynamical systems. I am very grateful for the assistance and criticism of several people in preparing the text. In particular, I wish to thank Leonardo Macarini and Nelson Moller who helped me with the writing of the first two chapters and the figures. Gonzalo Tomaria caught several errors and contributed with helpful suggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank the referee for a very careful reading of the manuscript and for a large number of comments with corrections and suggestions for improvement.
This book, first published in 2000, focuses on developments in the study of geodesic flows on homogenous spaces.
Generalized Heisenberg groups, or H-type groups, introduced by A. Kaplan, and Damek-Ricci harmonic spaces are particularly nice Lie groups with a vast spectrum of properties and applications. These harmonic spaces are homogeneous Hadamard manifolds containing the H-type groups as horospheres. These notes contain a thorough study of their Riemannian geometry by means of a detailed treatment of their Jacobi vector fields and Jacobi operators. Some problems are included and will hopefully stimulate further research on these spaces. The book is written for students and researchers, assuming only basic knowledge of Riemannian geometry, and it contains a brief survey of the background material needed to follow the entire treatment.
This collection of articles serves to commemorate the legacy of Joseph D'Atri, who passed away on April 29, 1993, a few days after his 55th birthday. Joe D' Atri is credited with several fundamental discoveries in ge ometry. In the beginning of his mathematical career, Joe was interested in the generalization of symmetrical spaces in the E. Cart an sense. Symmetric spaces, differentiated from other homogeneous manifolds by their geomet rical richness, allows the development of a deep analysis. Geometers have been constantly interested and challenged by the problem of extending the class of symmetric spaces so as to preserve their geometrical and analytical abundance. The name of D'Atri is tied to one of the most successful gen eralizations: Riemann manifolds in which (local) geodesic symmetries are volume-preserving (up to sign). In time, it turned out that the majority of interesting generalizations of symmetrical spaces are D'Atri spaces: natu ral reductive homogeneous spaces, Riemann manifolds whose geodesics are orbits of one-parameter subgroups, etc. The central place in D'Atri's research is occupied by homogeneous bounded domains in en, which are not symmetric. Such domains were discovered by Piatetskii-Shapiro in 1959, and given Joe's strong interest in the generalization of symmetric spaces, it was very natural for him to direct his research along this path.
"This book presents a collection of articles that cover areas of mathematics related to dynamical systems. The authors are well-known experts who use geometric and probabilistic methods to study interesting problems in the theory of dynamical systems and its applications. Some of the articles are surveys while others are original contributions. The topics covered include: Riemannian geometry, models in mathematical physics and mathematical biology, symbolic dynamics, random and stochastic dynamics. This book can be used by graduate students and researchers in dynamical systems and its applications."--BOOK JACKET.
Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.