Download Free Homogeneous Catalysis Book in PDF and EPUB Free Download. You can read online Homogeneous Catalysis and write the review.

Over the last decade, the area of homogeneous catalysis with transition metal has grown in great scientific interest and technological promise, with research in this area earning three Nobel Prizes and filing thousands of patents relating to metallocene and non-metallocene single site catalysts, asymmetric catalysis, carbon-carbon bond forming metathesis and cross coupling reactions. This text explains these new developments in a unified, cogent, and comprehensible manner while also detailing earlier discoveries and the fundamentals of homogeneous catalysis. Serving as a self-study guide for students and all chemists seeking to gain entry into this field, it can also be used by experienced researchers from both academia and industry for referring to leading state of the art review articles and patents, and also as a quick self-study manual in an area that is outside their immediate expertise. The book features: • Topics including renewable feed stocks (biofuel, glycerol), carbon dioxide based processes (polycarbonates), fluorous solvents, ionic liquid, hydroformylation, polymerization, oxidation, asymmetric catalysis, and more • Basic principles of organometallic chemistry, homogeneous catalysis, and relevant technological issues • Problems and answers, industrial applications (case studies), and examples from proven industrial processes with clear discussions on environmental and techno-commercial issues • Extensive references to cutting edge research with application potential and leading patents • Tables and illustrations to help explain difficult concepts
No available as softcover No other book available that gives insight into so many reactions of importance, while the field of homogeneous catalysis is becoming more and more important to organic chemists, industrial chemists, and academia. Gives real insight in the many new and old reactions of importance, based on the author's extensive experience in both teaching and industrial practice. Provide background to chemists trained in a different discipline and graduate and masters students who take catalysis as a main or secondary topic.
Recent results on a wide array of catalytic processes are collected in this volume. The book illustrates the importance of computational modelling in homogeneous catalysis by providing up-to-date reviews of its application to a variety of reactions of industrial interest.
The catalytic epoxidation of olefins plays an important role in the industrial production of several commodity compounds, as well as in the synthesis of many intermediates, fine chemicals, and pharmaceuticals. The scale of production ranges from millions of tons per year to a few grams per year. The diversity of catalysts is large and encompasses all the known categories of catalyst type: homogeneous, heterogeneous, and biological. This book summarizes the current status in these fields concentrating on rates, kinetics, and reaction mechanisms, but also covers broad topics including modeling, computational simulation, process concepts, spectroscopy and new catalyst development. The similarities and distinctions between the different reaction systems are compared, and the latest advances are described. - Comprehensive listing of epoxide products - Broad comparison of turnover frequencies of homogeneous, hetergeneous, main-group, biomimetic and biological catalysts - Analysis of the general strengths and weaknesses of varied catalytic systems - Detailed description of the mechanisms of reaction for classical and emerging catalysts
The book about homogeneous catalysis with metal complexes deals with the description of the reductive-oxidative, metal complexes in a liquid phase (in polar solvents, mainly in water, and less in nonpolar solvents). The exceptional importance of the redox processes in chemical systems, in the reactions occuring in living organisms, the environmental processes, atmosphere, water, soil, and in industrial technologies (especially in food-processing industries) is discussed. The detailed practical aspects of the established regularities are explained for solving the specific practical tasks in various fields of industrial chemistry, biochemistry, medicine, analytical chemistry and ecological chemistry. The main scope of the book is the survey and systematization of the latest advances in homogeneous catalysis with metal complexes. It gives an overview of the research results and practical experience accumulated by the author during the last decade.
Auf fortgeschrittenem Niveau und mit didaktischem Anspruch bietet Ihnen dieser Band zahlreiche Fragen mit Antworten und eine breite Palette von Fallstudien aus der Industrie, ergänzt durch weiterführende Literaturhinweise und Referenzen der Originalliteratur. Insbesondere geht es um die modernsten katalytischen Prozesse mit ihren Anwendungen in der Pharmazie und der Feinchemikalien-Industrie, wobei auch kommerzielle Aspekte besprochen werden. Der Autor, ein erfahrener Dozent mit Industriepraxis, legt Chemikern und Chemieingenieuren damit ein praxistaugliches Hilfsmittel vor.
This first book to illuminate this important aspect of chemical synthesis improves the lifetime of catalysts, thus reducing material and saving energy, costs and waste. The international panel of expert authors describes the studies that have been conducted concerning the way homogeneous catalysts decompose, and the differences between homogeneous and heterogeneous catalysts. The result is a ready reference for organic, catalytic, polymer and complex chemists, as well as those working in industry and with/on organometallics.
No available as softcover No other book available that gives insight into so many reactions of importance, while the field of homogeneous catalysis is becoming more and more important to organic chemists, industrial chemists, and academia. Gives real insight in the many new and old reactions of importance, based on the author's extensive experience in both teaching and industrial practice. Provide background to chemists trained in a different discipline and graduate and masters students who take catalysis as a main or secondary topic.
Research on designing new catalytic systems has been one of the most important fields in modern organic chemistry. One reason for this is the predominant contribution of catalysis to the concepts of atom economy and green chemistry in the 21st century. Gold, considered catalytically inactive for a long time, is now a fascinating partner of modern chemistry, as scientists such as Bond, Teles, Haruta, Hutchings, Ito and Hayashi opened new perspectives for the whole synthetic chemist community. This book presents the major advances in homogeneous catalysis, emphasizing the methodologies that create carbon-carbon and carbon-heteroatom bonds, the applications that create diversity and synthesize natural products, and the recent advances and challenges in asymmetric catalysis and computational research.It provides readers with in-depth information about homogeneous gold-catalyzed reactions and presents several explanations for the scientific design of a catalyst. Readers will be able to understand the entire gold area and find solutions to problems in catalysis.Gold Catalysis — An Homogeneous Approach is part of the Catalytic Science Series and features prominent authors who are experts in their respective fields.
Over the last 60 years the increasing knowledge of transition metal chemistry has resulted in an enormous advance of homogeneous catalysis as an essential tool in both academic and industrial fields. Remarkably, phosphorus(III) donor ligands have played an important role in several of the acknowledged catalytic reactions. The positive effects of phosphine ligands in transition metal homogeneous catalysis have contributed largely to the evolution of the field into an indispensable tool in organic synthesis and the industrial production of chemicals. This book aims to address the design and synthesis of a comprehensive compilation of P(III) ligands for homogeneous catalysis. It not only focuses on the well-known traditional ligands that have been explored by catalysis researchers, but also includes promising ligand types that have traditionally been ignored mainly because of their challenging synthesis. Topics covered include ligand effects in homogeneous catalysis and rational catalyst design, P-stereogenic ligands, calixarenes, supramolecular approaches, solid phase synthesis, biological approaches, and solubility and separation. Ligand families covered in this book include phosphine, diphosphine, phosphite, diphosphite, phosphoramidite, phosphonite, phosphinite, phosphole, phosphinine, phosphinidenene, phosphaalkenes, phosphaalkynes, P-chiral ligands, and cage ligands. Each ligand class is accompanied by detailed and reliable synthetic procedures. Often the rate limiting step in the application of ligands in catalysis is the synthesis of the ligands themselves, which can often be very challenging and time consuming. This book will provide helpful advice as to the accessibility of ligands as well as their synthesis, thereby allowing researchers to make a more informed choice. Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis is an essential overview of this important class of catalysts for academic and industrial researchers working in catalyst development, organometallic and synthetic chemistry.