Download Free Hodges Creek Watershed Tmdl Report Book in PDF and EPUB Free Download. You can read online Hodges Creek Watershed Tmdl Report and write the review.

New York City's municipal water supply system provides about 1 billion gallons of drinking water a day to over 8.5 million people in New York City and about 1 million people living in nearby Westchester, Putnam, Ulster, and Orange counties. The combined water supply system includes 19 reservoirs and three controlled lakes with a total storage capacity of approximately 580 billion gallons. The city's Watershed Protection Program is intended to maintain and enhance the high quality of these surface water sources. Review of the New York City Watershed Protection Program assesses the efficacy and future of New York City's watershed management activities. The report identifies program areas that may require future change or action, including continued efforts to address turbidity and responding to changes in reservoir water quality as a result of climate change.
The purpose of this report is to fulfill the requirements set forth in Section 303(d) of the Federal Clean Water Act (CWA) and the Water Quality Planning and Management regulation at 40 CFR Part 130 for the year 2002 [and to] inform the public about the Total Maximum Daily Load (TMDL) program process. This report is submitted to the USEPA for review and approval of Illinois' list of water quality limited waters. It provides the state's supporting documentation required by 40 CFR Part 130.7 and rationale in fulfilling Section 303(d) requirements.
In 1997, New York City adopted a mammoth watershed agreement to protect its drinking water and avoid filtration of its large upstate surface water supply. Shortly thereafter, the NRC began an analysis of the agreement's scientific validity. The resulting book finds New York City's watershed agreement to be a good template for proactive watershed management that, if properly implemented, will maintain high water quality. However, it cautions that the agreement is not a guarantee of permanent filtration avoidance because of changing regulations, uncertainties regarding pollution sources, advances in treatment technologies, and natural variations in watershed conditions. The book recommends that New York City place its highest priority on pathogenic microorganisms in the watershed and direct its resources toward improving methods for detecting pathogens, understanding pathogen transport and fate, and demonstrating that best management practices will remove pathogens. Other recommendations, which are broadly applicable to surface water supplies across the country, target buffer zones, stormwater management, water quality monitoring, and effluent trading.
The Chesapeake Bay is North America's largest and most biologically diverse estuary, as well as an important commercial and recreational resource. However, excessive amounts of nitrogen, phosphorus, and sediment from human activities and land development have disrupted the ecosystem, causing harmful algae blooms, degraded habitats, and diminished populations of many species of fish and shellfish. In 1983, the Chesapeake Bay Program (CBP) was established, based on a cooperative partnership among the U.S. Environmental Protection Agency (EPA), the state of Maryland, and the commonwealths of Pennsylvania and Virginia, and the District of Columbia, to address the extent, complexity, and sources of pollutants entering the Bay. In 2008, the CBP launched a series of initiatives to increase the transparency of the program and heighten its accountability and in 2009 an executive order injected new energy into the restoration. In addition, as part of the effect to improve the pace of progress and increase accountability in the Bay restoration, a two-year milestone strategy was introduced aimed at reducing overall pollution in the Bay by focusing on incremental, short-term commitments from each of the Bay jurisdictions. The National Research Council (NRC) established the Committee on the Evaluation of Chesapeake Bay Program Implementation for Nutrient Reduction in Improve Water Quality in 2009 in response to a request from the EPA. The committee was charged to assess the framework used by the states and the CBP for tracking nutrient and sediment control practices that are implemented in the Chesapeake Bay watershed and to evaluate the two-year milestone strategy. The committee was also to assess existing adaptive management strategies and to recommend improvements that could help CBP to meet its nutrient and sediment reduction goals. The committee did not attempt to identify every possible strategy that could be implemented but instead focused on approaches that are not being implemented to their full potential or that may have substantial, unrealized potential in the Bay watershed. Because many of these strategies have policy or societal implications that could not be fully evaluated by the committee, the strategies are not prioritized but are offered to encourage further consideration and exploration among the CBP partners and stakeholders.
The Environmental Protection Agency's estimate of the costs associated with implementing numeric nutrient criteria in Florida's waterways was significantly lower than many stakeholders expected. This discrepancy was due, in part, to the fact that the Environmental Protection Agency's analysis considered only the incremental cost of reducing nutrients in waters it considered "newly impaired" as a result of the new criteria-not the total cost of improving water quality in Florida. The incremental approach is appropriate for this type of assessment, but the Environmental Protection Agency's cost analysis would have been more accurate if it better described the differences between the new numeric criteria rule and the narrative rule it would replace, and how the differences affect the costs of implementing nutrient reductions over time, instead of at a fixed time point. Such an analysis would have more accurately described which pollutant sources, for example municipal wastewater treatment plants or agricultural operations, would bear the costs over time under the different rules and would have better illuminated the uncertainties in making such cost estimates.
The Environmental Protection Agency's estimate of the costs associated with implementing numeric nutrient criteria in Florida's waterways was significantly lower than many stakeholders expected. This discrepancy was due, in part, to the fact that the Environmental Protection Agency's analysis considered only the incremental cost of reducing nutrients in waters it considered "newly impaired" as a result of the new criteria-not the total cost of improving water quality in Florida. The incremental approach is appropriate for this type of assessment, but the Environmental Protection Agency's cost analysis would have been more accurate if it better described the differences between the new numeric criteria rule and the narrative rule it would replace, and how the differences affect the costs of implementing nutrient reductions over time, instead of at a fixed time point. Such an analysis would have more accurately described which pollutant sources, for example municipal wastewater treatment plants or agricultural operations, would bear the costs over time under the different rules and would have better illuminated the uncertainties in making such cost estimates.