Download Free Hilbert And Banach Space Valued Stochastic Processes Book in PDF and EPUB Free Download. You can read online Hilbert And Banach Space Valued Stochastic Processes and write the review.

This is a development of the book entitled Multidimensional Second Order Stochastic Processes. It provides a research expository treatment of infinite-dimensional stationary and nonstationary stochastic processes or time series, based on Hilbert and Banach space-valued second order random variables. Stochastic measures and scalar or operator bimeasures are fully discussed to develop integral representations of various classes of nonstationary processes such as harmonizable, V-bounded, Cramér and Karhunen classes as well as the stationary class. A new type of the Radon-Nikodým derivative of a Banach space-valued measure is introduced, together with Schauder basic measures, to study uniformly bounded linearly stationary processes.Emphasis is on the use of functional analysis and harmonic analysis as well as probability theory. Applications are made from the probabilistic and statistical points of view to prediction problems, Kalman filter, sampling theorems and strong laws of large numbers. Generalizations are made to consider Banach space-valued stochastic processes to include processes of pth order for p ≥ 1. Readers may find that the covariance kernel is always emphasized and reveals another aspect of stochastic processes.This book is intended not only for probabilists and statisticians, but also for functional analysts and communication engineers.
This book provides a research-expository treatment of infinite-dimensional nonstationary stochastic processes or time series. Stochastic measures and scalar or operator bimeasures are fully discussed to develop integral representations of various classes of nonstationary processes such as harmonizable, V-bounded, Cramér and Karhunen classes and also the stationary class. Emphasis is on the use of functional, harmonic analysis as well as probability theory. Applications are made from the probabilistic and statistical points of view to prediction problems, Kalman filter, sampling theorems and strong laws of large numbers. Readers may find that the covariance kernel analysis is emphasized and it reveals another aspect of stochastic processes. This book is intended not only for probabilists and statisticians, but also for communication engineers.
"Functional analysis methods are used on stochastic processes. Structural analysis of nonstationary and stationary processes are also included. This book is in the intersection of probability theory and analysis"--
Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.
This volume contains the proceedings of the AMS Special Session on Celebrating M. M. Rao's Many Mathematical Contributions as he Turns 90 Years Old, held from November 9–10, 2019, at the University of California, Riverside, California. The articles show the effectiveness of abstract analysis for solving fundamental problems of stochastic theory, specifically the use of functional analytic methods for elucidating stochastic processes and their applications. The volume also includes a biography of M. M. Rao and the list of his publications.
This volume and "IStochastic Processes, Physics and Geometry: New Interplays II" present state-of-the-art research currently unfolding at the interface between mathematics and physics. Included are select articles from the international conference held in Leipzig (Germany) in honor of Sergio Albeverio's sixtieth birthday. The theme of the conference, "Infinite Dimensional (Stochastic) Analysis and Quantum Physics", was chosen to reflect Albeverio's wide-ranging scientific interests. The articles in these books reflect that broad range of interests and provide a detailed overview highlighting the deep interplay among stochastic processes, mathematical physics, and geometry. The contributions are written by internationally recognized experts in the fields of stochastic analysis, linear and nonlinear (deterministic and stochastic) PDEs, infinite dimensional analysis, functional analysis, commutative and noncommutative probability theory, integrable systems, quantum and statistical mechanics, geometric quantization, and neural networks. Also included are applications in biology and other areas. Most of the contributions are high-level research papers. However, there are also some overviews on topics of general interest. The articles selected for publication in these volumes were specifically chosen to introduce readers to advanced topics, to emphasize interdisciplinary connections, and to stress future research directions. Volume I contains contributions from invited speakers; Volume II contains additional contributed papers. Members of the Canadian Mathematical Society may order at the AMS member price.
This book focuses on applications of martingales to the geometry of Banach spaces, and is accessible to graduate students.
Drawing on advanced probability theory, Ambit Stochastics is used to model stochastic processes which depend on both time and space. This monograph, the first on the subject, provides a reference for this burgeoning field, complete with the applications that have driven its development. Unique to Ambit Stochastics are ambit sets, which allow the delimitation of space-time to a zone of interest, and ambit fields, which are particularly well-adapted to modelling stochastic volatility or intermittency. These attributes lend themselves notably to applications in the statistical theory of turbulence and financial econometrics. In addition to the theory and applications of Ambit Stochastics, the book also contains new theory on the simulation of ambit fields and a comprehensive stochastic integration theory for Volterra processes in a non-semimartingale context. Written by pioneers in the subject, this book will appeal to researchers and graduate students interested in empirical stochastic modelling.