Download Free Higher Mathematics For Engineers And Physicists Book in PDF and EPUB Free Download. You can read online Higher Mathematics For Engineers And Physicists and write the review.

This book can be used as either a primary text or a supplemental reference for courses in applied mathematics. Its core chapters are devoted to linear algebra, calculus, and ordinary differential equations. Additional topics include partial differential equations and approximation methods. Each chapter features an ample selection of solved problems. These problems were chosen to illustrate not only how to solve various algebraic and differential equations but also how to interpret the solutions in order to gain insight into the behavior of the system modeled by the equation. In addition to the worked-out problems, numerous examples and exercises appear throughout the text.
Due to the rapid expansion of the frontiers of physics and engineering, the demand for higher-level mathematics is increasing yearly. This book is designed to provide accessible knowledge of higher-level mathematics demanded in contemporary physics and engineering. Rigorous mathematical structures of important subjects in these fields are fully covered, which will be helpful for readers to become acquainted with certain abstract mathematical concepts. The selected topics are: - Real analysis, Complex analysis, Functional analysis, Lebesgue integration theory, Fourier analysis, Laplace analysis, Wavelet analysis, Differential equations, and Tensor analysis. This book is essentially self-contained, and assumes only standard undergraduate preparation such as elementary calculus and linear algebra. It is thus well suited for graduate students in physics and engineering who are interested in theoretical backgrounds of their own fields. Further, it will also be useful for mathematics students who want to understand how certain abstract concepts in mathematics are applied in a practical situation. The readers will not only acquire basic knowledge toward higher-level mathematics, but also imbibe mathematical skills necessary for contemporary studies of their own fields.
Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately for you, there's Schaum's. More than 40 million students have trusted Schaum's Outlines to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills. This Schaum's Outline gives you: Practice problems with full explanations that reinforce knowledge Coverage of the most up-to-date developments in your course field In-depth review of practices and applications Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Suitable for advanced courses in applied mathematics, this text covers analysis of lumped parameter systems, distributed parameter systems, and important areas of applied mathematics. Answers to selected problems. 1970 edition.
Infinite series. Fourier series. Solution of equations. Partial differentiation. Multiple integrals. Line integral. Ordinary diferential equations. Partial differential equations. Vector analysis. Complex variable. Probability. Empirical formulas and curve fitting.
This book is designed to be an introductory course to some basic chapters of Advanced Mathematics for Engineering and Physics students, researchers in different branches of Applied Mathematics and anyone wanting to improve their mathematical knowledge by a clear, live, self-contained and motivated text. Here, one can find different topics, such as differential (first order or higher order) equations, systems of differential equations, Fourier series, Fourier and Laplace transforms, partial differential equations, some basic facts and applications of the calculus of variations and, last but not least, an original and more intuitive introduction to probability theory. All these topics are carefully introduced, with complete proofs, motivations, examples, applications, problems and exercises, which are completely solved at the end of the book. We added a generous supplementary material (11.1) with a self-contained and complete introduction to normed, metric and Hilbert spaces. Since we used some topics from complex function theory, we also introduced in Chapter 11 a section (11.2) with the basic facts in this important field. What a reader needs for a complete understanding of this book? For a deep understanding of this book, it is required to take a course in undergraduate calculus and linear algebra. We mostly tried to use the engineering intuition instead of insisting on mathematical tricks. The main feature of the material presented here is its clarity, motivation and the genuine desire of the authors to make extremely transparent the "mysterious" mathematical tools that are used to describe and organize the great variety of impressions that come to the searching mind, from the infinite complexity of Nature. The book is recommended not only to engineering and physics students or researchers but also to junior students in mathematics because it shows the connection between pure mathematics and physical phenomena, which always supply motivations for mathematical discoveries.
Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations.