Download Free Higher Harmonic Control Analysis For Vibration Reduction Of Helicopter Rotor Systems Book in PDF and EPUB Free Download. You can read online Higher Harmonic Control Analysis For Vibration Reduction Of Helicopter Rotor Systems and write the review.

An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor operati...
Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibration caused by dynamic stall. The exposition of ideas, materials and algorithms in this monograph is supported by extensive reporting of results from numerical simulations of smart helicopter rotors. This monograph will be a valuable source of reference for researchers and engineers with backgrounds in aerospace, mechanical and electrical engineering interested in smart materials and vibration control. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
A rotorcraft is a class of aircraft that uses large-diameter rotating wings to accomplish efficient vertical take-off and landing. The class encompasses helicopters of numerous configurations (single main rotor and tail rotor, tandem rotors, coaxial rotors), tilting proprotor aircraft, compound helicopters, and many other innovative configuration concepts. Aeromechanics covers much of what the rotorcraft engineer needs: performance, loads, vibration, stability, flight dynamics, and noise. These topics include many of the key performance attributes and the often-encountered problems in rotorcraft designs. This comprehensive book presents, in depth, what engineers need to know about modelling rotorcraft aeromechanics. The focus is on analysis, and calculated results are presented to illustrate analysis characteristics and rotor behaviour. The first third of the book is an introduction to rotorcraft aerodynamics, blade motion, and performance. The remainder of the book covers advanced topics in rotary wing aerodynamics and dynamics.