Download Free Higher Dimensional Complex Varieties Book in PDF and EPUB Free Download. You can read online Higher Dimensional Complex Varieties and write the review.

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Higher Dimensional Algebraic Geometry presents recent advances in the classification of complex projective varieties. Recent results in the minimal model program are discussed, and an introduction to the theory of moduli spaces is presented.
This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the sub ject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply ex plain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsin stitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory". The construction of minimal models was discussed by T.
This text offers a collection of survey and research papers by leading specialists in the field documenting the current understanding of higher dimensional varieties. Recently, it has become clear that ideas from many branches of mathematics can be successfully employed in the study of rational and integral points. This book will be very valuable for researchers from these various fields who have an interest in arithmetic applications, specialists in arithmetic geometry itself, and graduate students wishing to pursue research in this area.
The classification theory of algebraic varieties is the focus of this book. This very active area of research is still developing, but an amazing quantity of knowledge has accumulated over the past twenty years. The authors goal is to provide an easily accessible introduction to the subject. The book starts with preparatory and standard definitions and results, then moves on to discuss various aspects of the geometry of smooth projective varieties with many rational curves, and finishes in taking the first steps towards Moris minimal model program of classification of algebraic varieties by proving the cone and contraction theorems. The book is well-organized and the author has kept the number of concepts that are used but not proved to a minimum to provide a mostly self-contained introduction.
This graduate-level textbook introduces the classical theory of complex tori and abelian varieties, while presenting in parallel more modern aspects of complex algebraic and analytic geometry. Beginning with complex elliptic curves, the book moves on to the higher-dimensional case, giving characterizations from different points of view of those complex tori which are abelian varieties, i.e., those that can be holomorphically embedded in a projective space. This allows, on the one hand, for illuminating the computations of nineteenth-century mathematicians, and on the other, familiarizing readers with more recent theories. Complex tori are ideal in this respect: One can perform "hands-on" computations without the theory being totally trivial. Standard theorems about abelian varieties are proved, and moduli spaces are discussed. Recent results on the geometry and topology of some subvarieties of a complex torus are also included. The book contains numerous examples and exercises. It is a very good starting point for studying algebraic geometry, suitable for graduate students and researchers interested in algebra and algebraic geometry. Information for our distributors: SMF members are entitled to AMS member discounts.
This book focuses on recent advances in the classification of complex projective varieties. It is divided into two parts. The first part gives a detailed account of recent results in the minimal model program. In particular, it contains a complete proof of the theorems on the existence of flips, on the existence of minimal models for varieties of log general type and of the finite generation of the canonical ring. The second part is an introduction to the theory of moduli spaces. It includes topics such as representing and moduli functors, Hilbert schemes, the boundedness, local closedness and separatedness of moduli spaces and the boundedness for varieties of general type. The book is aimed at advanced graduate students and researchers in algebraic geometry.
Number systems based on a finite collection of symbols, such as the 0s and 1s of computer circuitry, are ubiquitous in the modern age. Finite fields are the most important such number systems, playing a vital role in military and civilian communications through coding theory and cryptography. These disciplines have evolved over recent decades, and where once the focus was on algebraic curves over finite fields, recent developments have revealed the increasing importance of higher-dimensional algebraic varieties over finite fields. The papers included in this publication introduce the reader to recent developments in algebraic geometry over finite fields with particular attention to applications of geometric techniques to the study of rational points on varieties over finite fields of dimension of at least 2.
The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.