Download Free High Temperature Superconductivity Book in PDF and EPUB Free Download. You can read online High Temperature Superconductivity and write the review.

Since the 1980s, a general theme in the study of high-temperature superconductors has been to test the BCS theory and its predictions against new data. At the same time, this process has engendered new physics, new materials, and new theoretical frameworks. Remarkable advances have occurred in sample quality and in single crystals, in hole and electron doping in the development of sister compounds with lower transition temperatures, and in instruments to probe structure and dynamics. Handbook of High-Temperature Superconductvity is a comprehensive and in-depth treatment of both experimental and theoretical methodologies by the the world's top leaders in the field. The Editor, Nobel Laureate J. Robert Schrieffer, and Associate Editor James S. Brooks, have produced a unified, coherent work providing a global view of high-temperature superconductivity covering the materials, the relationships with heavy-fermion and organic systems, and the many formidable challenges that remain.
High-Temperature Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. Much has been learned about the behavior and mechanism of this novel type of superconductivity over the past five years, but many questions remain unanswered. This book gives an invaluable survey which will help students and researchers to consolidate their knowledge and build upon it. A large number of illustrations and tables give valuable information for specialists. A critical comparison of different theoretical models involving strong electron correlations, spin fluctuations, phonons and excitons provides a background for understanding modern trends in the theory of high-temperature superconductivity.
One of the most exciting developments in modern physics has been the discovery of the new class of oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. Indeed, the idea of a room-temperature superconductor, which just a short time ago was considered science fiction, appears to be a distinctly possible outcome of materials research. To address the need to train students and scientists for research in this exciting field, Jeffrey W. Lynn and colleagues at the University of Maryland, College Park, as well as other superconductivity experts from around the U.S., taught a graduate-level course in the fall of 1987, from which the chapters in this book were drawn. Subjects included are: Survey of superconductivity (J. Lynn).- The theory of type-II superconductivity (D. Belitz).- The Josephson effect (P. Ferrell).- Crystallography (A. Santoro).- Electronic structure (C.P. Wang).- Magnetic properties and interactions (J. Lynn).- Synthesis and diamagnetic properties (R. Shelton).- Electron pairing (P. Allen).- Superconducting devices (F. Bedard).- Superconducting properties (J. Crow, N.-P. Ong).
High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials.
In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.
This book presents the current knowledge about superconductivity in high Tc cuprate superconductors. There is a large scientific interest and great potential for technological applications. The book discusses all the aspects related to all families of cuprate superconductors discovered so far. Beginning with the phenomenon of superconductivity, the book covers: the structure of cuprate HTSCs, critical currents, flux pinning, synthesis of HTSCs, proximity effect and SQUIDs, possible applications of high Tc superconductors and theories of superconductivity. Though a high Tc theory is still awaited, this book describes the present scenario and BCS and RVB theories. The second edition was significantly extended by including film-substrate lattice matching and buffer layer considerations in thin film HTSCs, brick-wall microstructure in the epitaxial films, electronic structure of the CuO2 layer in cuprates, s-wave and d-wave coupling in HTSCs and possible scenarios of theories of high Tc superconductivity.
Drawing from physics, mechanical engineering, electrical engineering, ceramics, and metallurgy, high-temperature superconductivity (HTSC) spans nearly the entire realm of materials science. This volume presents each of those disciplines at an introductory level, such that readers will ultimately be able to read the literature in the field.
This thesis introduces a systematic study on Second Generation (2G) High Temperature Superconductors (HTS), covering a novel design of an advanced medical imaging device using HTS, and an in-depth investigation on the losses of HTS. The text covers the design and simulation of a superconducting Lorentz Force Electrical Impedance Tomography. This is potentially a significant medical device that is more efficient and compact than an MRI, and is capable of detecting early cancer, as well as other pathologies such stroke and internal haemorrhages. It also presents the information regarding the fundamental physics of superconductivity, concentrating on the AC losses in superconducting coils and tapes. Overall, the thesis signifies an important contribution to the investigation of High Temperature Superconductors. This thesis will be beneficial to the development of advanced superconducting applications in healthcare as well as more broadly in electrical and energy systems.
This book provides a comprehensive presentation of all types of HTSC and includes a broad overview on HTSC computer simulations and modeling. Especial attention is devoted to the Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O families that today are the most perspective for applications. The book includes a great number of illustrations and references. The monograph is addressed to students, post-graduate students and specialists, taking part in the development, preparation and researching of new materials.