Download Free High Temperature Polymer Dielectrics Book in PDF and EPUB Free Download. You can read online High Temperature Polymer Dielectrics and write the review.

Provides a complete overview of the state-of-the-art high temperature polymer dielectrics, with a focus on fundamental background and recent advances.
High Temperature Polymer Dielectrics Overview on how to achieve polymer dielectrics at high temperatures, with emphasis on diverse applications in various electrical insulation fields High Temperature Polymer Dielectrics: Fundamentals and Applications in Power Equipment systematically describes the latest research progress surrounding high-temperature polymer dielectric (HTPD) materials and their applications in electrical insulation fields such as high-temperature energy storage capacitors, motors, packaging, printed circuit board, new energy power equipment, and aerospace electrical equipment. The comprehensive text provides a description of the market demand and theoretical research value of HTPDs in electrical equipment and enables readers to improve the performance and design of existing HTPD materials, and to develop efficient new high temperature polymer dielectric materials in general. Specific sample topics covered in High Temperature Polymer Dielectrics include: Thermal and electrical properties of high-temperature polymers, and the excellent thermal stability, mechanical properties, and long service life of polymer dielectrics Why fluorinated polymers are more thermally stable than their corresponding hydrogen-substituted polymers Static Thermomechanical Analysis (TMA), a technique for measuring the functional relationship between the deformation of the materials and the temperature and time under different actions Polyetheretherketone (PEEK), a semi-crystalline polymer material with ether bonds and ketone carbonyl groups in molecular chains Providing a complete overview of the state-of-the-art high temperature polymer dielectrics, with a focus on fundamental background and recent advances, High Temperature Polymer Dielectrics is an essential resource for materials scientists, electrical engineers, polymer chemists, physicists, and professionals working in the chemical industry as a whole.
Explore the diverse electrical engineering application of polymer composite materials with this in-depth collection edited by leaders in the field Polymer Composites for Electrical Engineering delivers a comprehensive exploration of the fundamental principles, state-of-the-art research, and future challenges of polymer composites. Written from the perspective of electrical engineering applications, like electrical and thermal energy storage, high temperature applications, fire retardance, power cables, electric stress control, and others, the book covers all major application branches of these widely used materials. Rather than focus on polymer composite materials themselves, the distinguished editors have chosen to collect contributions from industry leaders in the area of real and practical electrical engineering applications of polymer composites. The books relevance will only increase as advanced polymer composites receive more attention and interest in the area of advanced electronic devices and electric power equipment. Unique amongst its peers, Polymer Composites for Electrical Engineering offers readers a collection of practical and insightful materials that will be of great interest to both academic and industrial audiences. Those resources include: A comprehensive discussion of glass fiber reinforced polymer composites for power equipment, including GIS, bushing, transformers, and more) Explorations of polymer composites for capacitors, outdoor insulation, electric stress control, power cable insulation, electrical and thermal energy storage, and high temperature applications A treatment of semi-conductive polymer composites for power cables In-depth analysis of fire-retardant polymer composites for electrical engineering An examination of polymer composite conductors Perfect for postgraduate students and researchers working in the fields of electrical, electronic, and polymer engineering, Polymer Composites for Electrical Engineering will also earn a place in the libraries of those working in the areas of composite materials, energy science and technology, and nanotechnology.
Dielectric Polymer Nanocomposites provides the first in-depth discussion of nano-dielectrics, an emerging and fast moving topic in electrical insulation. The text begins with an overview of the background, principles and promise of nanodielectrics, followed by a discussion of the processing of nanocomposites and then proceeds with special considerations of clay based processes, mechanical, thermal and electric properties and surface properties as well as erosion resistance. Carbon nanotubes are discussed as a means of creation of non linear conductivity, the text concludes with a industrial applications perspective.
This book provides an overview of key dielectric materials for capacitor technology. It covers preparation and characterization of state-of-the art dielectric materials including ceramics, polymers and polymer nanocomposites, for popular applications including energy storage, microwave communication and multi-layer ceramic capacitors.
Dielectric Polymer Materials for High-Density Energy Storage begins by introducing the fundamentals and basic theories on the dielectric behavior of material. It then discusses key issues on the design and preparation of dielectric polymer materials with strong energy storage properties, including their characterization, properties and manipulation. The latest methods, techniques and applications are explained in detail regarding this rapidly developing area. The book will support the work of academic researchers and graduate students, as well as engineers and materials scientists working in industrial research and development. In addition, it will be highly valuable to those directly involved in the fabrication of capacitors in industry, and to researchers across the areas of materials science, polymer science, materials chemistry, and nanomaterials. Focuses on how to design and prepare dielectric polymer materials with strong energy storage properties Includes new techniques for adjusting the properties of dielectric polymer materials Presents a thorough review of the state-of-the-art in the field of dielectric polymer materials, providing valuable insights into potential avenues of development
In general, a dielectric is considered as a non-conducting or insulating material (such as a ceramic or polymer used to manufacture a microelectronic device). This book describes the laws governing all dielectric phenomena. · A unified approach is used in describing each of the dielectric phenomena, with the aim of answering "what?", "how?" and "why" for the occurrence of each phenomenon;· Coverage unavailable in other books on ferroelectrics, piezoelectrics, pyroelectrics, electro-optic processes, and electrets;· Theoretical analyses are general and broadly applicable;· Mathematics is simplified and emphasis is placed on the physical insight of the mechanisms responsible for the phenomena;· Truly comprehensive coverage not available in the current literature.
The book gives the reader an overview on electrical properties and applications such as converter transformer, transistor, and energy storage. Besides, this book also presents some recent researches on typical polymer material such as silicon rubber and LDPE, which may provide some clues of advanced polymer properties for both engineers and researches. The author has been a professor at the Department of Electrical Engineering, School of Electrical Engineering and Automation, Tianjin University, China, since 2002. He has been active in polymer insulation research since the 1990s. He is a member of IEEJ, senior member of CSEE, member at several WG in CIGRE, and associate editor of the IEEE Transactions on Dielectrics and Electrical Insulation.
This book is mostly based on papers presented at the Fourth International Symposium on this topic held in Savannah, Georgia. However, in addition to these papers, certain very relevant papers have also been included to broaden the scope and thus enhance the value of this book.Currently there is tremendous interest in these material because of their
The book is in five parts: Part I introduces the physical and chemical structure of polymers and their breakdown; Part II reviews electrical degradation in polymers, and Part III reviews conduction and deterministic breakdown in solids. Part IV discusses the stochastic nature of break-down from empirical and modelling viewpoints, and Part V indicates practical implications and strategies for engineers. Much of the discussion applies to non-crystalline materials generally.