Download Free High Temperature Phenomena In Shock Waves Book in PDF and EPUB Free Download. You can read online High Temperature Phenomena In Shock Waves and write the review.

Physical, chemical processes in gases at high temperatures are focus of outstanding text, which combines material from gas dynamics, shock-wave theory, thermodynamics and statistical physics, other fields. 284 illustrations. 1966–1967 edition.
The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows and the inside of the shock wave itself are also examined. Examples of specific non-equilibrium flows are given, generally corresponding to those encountered during spatial missions or in shock tube experiments.
One of the main reasons for continuing interest in shock focusing is its ability to concentrate energy in a small volume and produce extreme temperatures and pressures in fluids in a controlled laboratory environment. The phenomenon of shock wave focusing leading to extreme conditions in fluids during micro- and nanosecond time intervals is a spectacular example of mechanics at small length and time scales revealing the major properties of shock dynamics including high-temperature gas phenomena. Production of high-energy concentrations in gases and fluids with star-like temperatures and extreme pressures by means of a stable imploding shock is of great interest not only in its own right but also because of the connection to a multitude of phenomena in nature, technology and medicine.
Physical, chemical processes in gases at high temperatures are focus of outstanding text by two distinguished physicists. Combines material from gas dynamics, shock-wave theory, thermodynamics and statistical physics, molecular physics, spectroscopy, radiation theory, other fields for comprehensive treatment. 284 black-and-white illustrations. 1966–1967 edition, originally published in two volumes.
One of the main goals of investigations of shock-wave phenomena in condensed matter is to develop methods for predicting effects of explosions, high-velocity collisions, and other kinds of intense dynamic loading of materials and structures. Based on the results of international research conducted over the past 30 years, this book is addressed not only to experts in shock-wave physics, but also to interested representatives from adjacent fields of activity and to students who seek an introduction to the current issues. With that goal in mind, the book opens with a brief account of the theoretical background and a short description of experimental techniques. The authors then progress to a systematic treatment of special topics, some of which have not been fully addressed in the literature to date.
The scientific understanding of high-velocity deformation has advanced substantially during the past decade. On the one hand, the framework for a theory explaining the metallurgical effects of shock waves is beginning to take shape; on the other hand, the technological applications of high strain-rate processes have found their way into industries in countries around the world. Ex plosive cladding, welding, forming, compaction and consolidation, cutting, and hardening, in addition to high energy-rate deformation processes using other energy sources, are some of the topics of contemporary technological importance. Metallurgical effects are of the utmost importance in both the scientific understanding of the phenomena involved, and in the successful development and utilization of the associated applications. The international conference upon which this book is based had as its major objectives the acceleration of progress in the field of high-strain rate deformation and fabrication, including applications, by providing a forum for the exchange of state-of-the art information on the metallurgical effects of high strain-rate deformation and fabrication; and the organization of this informa tion into a timely and coherent body of knowledge focused around significant areas and applications. This volume is a manifestation of these objectives. In addition, the contents of this book were organized to provide for a somewhat logical perspective of the fundamentals, development, and state-of-the-art applications of high strain-rate and shock phenomena.
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Volume II presents interpretations of the physical basis of shockwaves and high-temperature hydrodynamic phenomena and gives practical guidance to those who work with these subjects in science and modern technology. This volume contains chapters discussing such topics as the shockwave structure in gases; physical and chemical kinetics in hydrodynamic processes; the radiative phenomena in shock waves and in strong explosions in the air; thermal waves and shockwaves in solids; and self-similar processes in gasdynamics. Physicists, engineers, researchers, and professors and students in the field of the physical sciences will find the book very educational.
Courant and Friedrich's classical treatise was first published in 1948 and tThe basic research for it took place during World War II. However, many aspects make the book just as interesting as a text and a reference today. It treats the dynamics of compressible fluids in mathematical form, and attempts to present a systematic theory of nonlinear wave propagation, particularly in relation to gas dynamics. Written in the form of an advanced textbook, it should appeal to engineers, physicists and mathematicians alike.