Download Free High Temperature Aqueous Solutions Book in PDF and EPUB Free Download. You can read online High Temperature Aqueous Solutions and write the review.

This book provides a thorough discussion of the thermodynamics of aqueous solutions and presents tools for analyzing and solving scientific and practical problems arising in this area. It also presents methods that can be used to deal with ionic and nonionic aqueous solutions under sub- or supercritical conditions. Illustrations and tables give examples of procedures employed to predict thermodynamic quantities of the solutions, and an appendix summarizing statistical mechanical equations used to describe the systems is also provided. High-Temperature Aqueous Solutions: Thermodynamic Properties contains essential information for physical chemists, geochemists, geophysicists, chemical technicians, and scientists involved in electric power generation.
The International Association for the Properties of Water and Steam (IAPWS) has produced this book in order to provide an accessible, up-to-date overview of important aspects of the physical chemistry of aqueous systems at high temperatures and pressures. These systems are central to many areas of scientific study and industrial application, including electric power generation, industrial steam systems, hydrothermal processing of materials, geochemistry, and environmental applications. The authors' goal is to present the material at a level that serves both the graduate student seeking to learn the state of the art, and also the industrial engineer or chemist seeking to develop additional expertise or to find the data needed to solve a specific problem. The wide range of people for whom this topic is important provides a challenge. Advanced work in this area is distributed among physical chemists, chemical engineers, geochemists, and other specialists, who may not be aware of parallel work by those outside their own specialty. The particular aspects of high-temperature aqueous physical chemistry of interest to one industry may be irrelevant to another; yet another industry might need the same basic information but in a very different form. To serve all these constituencies, the book includes several chapters that cover the foundational thermophysical properties (such as gas solubility, phase behavior, thermodynamic properties of solutes, and transport properties) that are of interest across numerous applications. The presentation of these topics is intended to be accessible to readers from a variety of backgrounds. Other chapters address fundamental areas of more specialized interest, such as critical phenomena and molecular-level solution structure. Several chapters are more application-oriented, addressing areas such as power-cycle chemistry and hydrothermal synthesis. As befits the variety of interests addressed, some chapters provide more theoretical guidance while others, such as those on acid/base equilibria and the solubilities of metal oxides and hydroxides, emphasize experimental techniques and data analysis.- Covers both the theory and applications of all Hydrothermal solutions - Provides an accessible, up-to-date overview of important aspects of the physical chemistry of aqueous systems at high temperatures and pressures- The presentation of the book is understandable to readers from a variety of backgrounds
High Temperature Coatings, Second Edition, demonstrates how to counteract the thermal effects of rapid corrosion and degradation of exposed materials and equipment that can occur under high operating temperatures. This is the first true practical guide on the use of thermally protective coatings for high-temperature applications, including the latest developments in materials used for protective coatings. It covers the make-up and behavior of such materials under thermal stress and the methods used for applying them to specific types of substrates, as well as invaluable advice on inspection and repair of existing thermal coatings. With his long experience in the aerospace gas turbine industry, the author has compiled the very latest in coating materials and coating technologies, as well as hard-to-find guidance on maintaining and repairing thermal coatings, including appropriate inspection protocols. The book is supplemented with the latest reference information and additional support to help readers find more application- and industry-type coatings specifications and uses. - Offers an overview of the underlying fundamental concepts of thermally-protective coatings, including thermodynamics, energy kinetics, crystallography and equilibrium phases - Covers essential chemistry and physics of underlying substrates, including steels, nickel-iron alloys, nickel-cobalt alloys and titanium alloys - Provides detailed guidance on a wide variety of coating types, including those used against high temperature corrosion and oxidative degradation and thermal barrier coatings
The Environmental Chemistry of Aluminum provides a comprehensive, fundamental account of the aqueous chemistry of aluminum within an environmental context. An excellent reference for environmental chemists and scientific administrators of environmental programs, this book contains material reflecting the many recent changes in this rapidly developing discipline. The first three chapters discuss the most fundamental aspects of aluminum chemistry: its quantitation in soils and natural waters, including speciation measurements, and its stable chemical forms, both as a dissolved solute and in a solid phase. These chapters emphasize both critical assessments of and definitive recommendations for laboratory methodologies and measured thermodynamic properties relating to aluminum chemistry. The next four chapters in The Environmental Chemistry of Aluminum build on this foundation to provide details of the polymeric chemistry of aluminum: its polynuclear and colloidal hydrolytic species in aqueous solution, its complexes with natural organic ligands, including humic substances, and its role as an adsorptive and adsorbent in surface reactions. These chapters are grounded in experimental results rather than conceptual modeling. The final three chapters describe the chemistry of aluminum in soils, waters, and watersheds. These chapters illustrate the problems of spatial and temporal variability, metastability, and scale that continue to make aluminum geochemistry one of the great challenges in modern environmental science.
This exhaustive work in three volumes with featuring cross-reference system provides a thorough overview of ultra-high temperature materials – from elements and chemical compounds to alloys and composites. Topics included are physical (crystallographic, thermodynamic, thermo-physical, electrical, optical, physico-mechanical, nuclear) and chemical (solid-state diffusion, interaction with chemical elements and compounds, interaction with gases, vapours and aqueous solutions) properties of the individual physico-chemical phases and multi-phase materials with melting (or sublimation) points over or about 2500 °C. The first volume focuses on carbon (graphite/graphene) and refractory metals (W, Re, Os, Ta, Mo, Nb, Ir). The second and third volumes are dedicated solely to refractory (ceramic) compounds (oxides, nitrides, carbides, borides, silicides) and to the complex materials – refractory alloys, carbon and ceramic composites, respectively. It will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students in various disciplines alike. The reader is provided with the full qualitative and quantitative assessment for the materials, which could be applied in various engineering devices and environmental conditions at ultra-high temperatures, on the basis of the latest updates in the field of physics, chemistry, materials science, nanotechnology and engineering.
Expertise in electrolyte systems has become increasingly important in traditional CPI operations, as well as in oil/gas exploration and production. This book is the source for predicting electrolyte systems behavior, an indispensable "do-it-yourself" guide, with a blueprint for formulating predictive mathematical electrolyte models, recommended tabular values to use in these models, and annotated bibliographies. The final chapter is a general recipe for formulating complete predictive models for electrolytes, along with a series of worked illustrative examples. It can serve as a useful research and application tool for the practicing process engineer, and as a textbook for the chemical engineering student.
The International Association for the Properties of Water and Steam (IAPWS) has produced this book in order to provide an accessible, up-to-date overview of important aspects of the physical chemistry of aqueous systems at high temperatures and pressures. These systems are central to many areas of scientific study and industrial application, including electric power generation, industrial steam systems, hydrothermal processing of materials, geochemistry, and environmental applications. The authors' goal is to present the material at a level that serves both the graduate student seeking to learn the state of the art, and also the industrial engineer or chemist seeking to develop additional expertise or to find the data needed to solve a specific problem. The wide range of people for whom this topic is important provides a challenge. Advanced work in this area is distributed among physical chemists, chemical engineers, geochemists, and other specialists, who may not be aware of parallel work by those outside their own specialty. The particular aspects of high-temperature aqueous physical chemistry of interest to one industry may be irrelevant to another; yet another industry might need the same basic information but in a very different form. To serve all these constituencies, the book includes several chapters that cover the foundational thermophysical properties (such as gas solubility, phase behavior, thermodynamic properties of solutes, and transport properties) that are of interest across numerous applications. The presentation of these topics is intended to be accessible to readers from a variety of backgrounds. Other chapters address fundamental areas of more specialized interest, such as critical phenomena and molecular-level solution structure. Several chapters are more application-oriented, addressing areas such as power-cycle chemistry and hydrothermal synthesis. As befits the variety of interests addressed, some chapters provide more theoretical guidance while others, such as those on acid/base equilibria and the solubilities of metal oxides and hydroxides, emphasize experimental techniques and data analysis.- Covers both the theory and applications of all Hydrothermal solutions - Provides an accessible, up-to-date overview of important aspects of the physical chemistry of aqueous systems at high temperatures and pressures- The presentation of the book is understandable to readers from a variety of backgrounds
This volume is part of the series on "Chemical Thermodynamics", published under the aegis of the OECD Nuclear Energy Agency. It contains a critical review of the literature on thermodynamic data for inorganic compounds of zirconium. A review team, composed of five internationally recognized experts, has critically reviewed all the scientific literature containing chemical thermodynamic information for the above mentioned systems. The results of this critical review carried out following the Guidelines of the OECD NEA Thermochemical Database Project have been documented in the present volume, which contains tables of selected values for formation and reaction thermodynamical properties and an extensive bibliography.* Critical review of all literature on chemical thermodynamics for compounds and complexes of Zr.* Tables of recommended Selected Values for thermochemical properties* Documented review procedure* Exhaustive bibliography* Intended to meet requirements of radioactive waste management community* Valuable reference source for the physical, analytical and environmental chemist.
Containing the very latest information on all aspects of enthalpy and internal energy as related to fluids, this book brings all the information into one authoritative survey in this well-defined field of chemical thermodynamics. Written by acknowledged experts in their respective fields, each of the 26 chapters covers theory, experimental methods and techniques and results for all types of liquids and vapours. These properties are important in all branches of pure and applied thermodynamics and this vital source is an important contribution to the subject hopefully also providing key pointers for cross-fertilization between sub-areas.