Download Free High Tc Update Book in PDF and EPUB Free Download. You can read online High Tc Update and write the review.

A much-needed update on complex high-temperature superconductors, focusing on materials aspects; this timely book coincides with a recent major break-through of the discovery of iron-based superconductors. It provides an overview of materials aspects of high-temperature superconductors, combining introductory aspects, description of new physics, material aspects, and a description of the material properties This title is suitable for researchers in materials science, physics and engineering. Also for technicians interested in the applications of superconductors, e.g. as biomagnets
Since the 1980s, a general theme in the study of high-temperature superconductors has been to test the BCS theory and its predictions against new data. At the same time, this process has engendered new physics, new materials, and new theoretical frameworks. Remarkable advances have occurred in sample quality and in single crystals, in hole and electron doping in the development of sister compounds with lower transition temperatures, and in instruments to probe structure and dynamics. Handbook of High-Temperature Superconductvity is a comprehensive and in-depth treatment of both experimental and theoretical methodologies by the the world's top leaders in the field. The Editor, Nobel Laureate J. Robert Schrieffer, and Associate Editor James S. Brooks, have produced a unified, coherent work providing a global view of high-temperature superconductivity covering the materials, the relationships with heavy-fermion and organic systems, and the many formidable challenges that remain.
The exciton mechanism of high-Tc superconductivity in copper oxides was initially proposed by Prof. J. Bardeen. His insight is largely shared by another luminary in superconductivity, Prof. V. L. Ginzburg. The main author of the book, Dr. Nie Luo, was motivated by their insights to give a geometrical explanation to the excitonic Coulomb interaction and has developed a unique formalism to understand and predict physical properties of high-Tc superconductors. This work is supported by increasingly strong evidence for electron–hole interactions in p-type cuprates. The presence of electrons in hole-doped cuprates is revealed by the works of the authors and many others, including the late Prof. L. P. Gor’kov. The book also tries to understand the interlayer Coulomb (ILC) pairing model by the excitonic Coulomb interaction. Developed by Prof. A. J. Leggett, ILC theory shares many views with Ginzburg’s approach. The other author of the book, Prof. George H. Miley, shares with us his personal experience with Prof. Bardeen on the exciton’s role in physics problems including high-Tc superconductivity. The results and predictions of this excitonic Coulomb mechanism have been verified by an increasing number of experiments. This book summarizes the current status and fathoms future directions.
Since the discovery of high temperature superconductors the scientific com nmnity has been very active in research on material and system development as well as on the basic understanding of the mechanism of superconductiv ity at high transition temperatures. Industrial groups joined in very soon as with these new materials the prospects for commercial application of super conductivity seemed to be more promising than ever. Materials processing was divided into film deposition and bulk preparation techniques, the latter including conductor fabrication and melt growth of monolithic samples as well. Because of the high impact of possible applications in energy technol ogy, wire and tape fabrication of the BSCCO superconductors is one of the most important fields, in addition to thin film technology for mobile comuni cation. Only since processes like IBAD and RABiTS TM were invented have film deposition techniques also become important for energy technology. In order to produce suitable conductors with material properties which meet the challenge imposed by energy technology, detailed understanding of the phase formation and physical properties of the high temperature super conductors is necessary. The goal of this book is on one hand to provide the basic information on phase formation and physical properties, and to give a short overview of the state of the art in conductor preparation and character ization. On the other hand it contains the author's own results in the field of preparation and characterization.
In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.
http://www.worldscientific.com/worldscibooks/10.1142/0957
What sets this book apart from others on the introduction to super-conductivity and high-Tc materials is its simple and pragmatic approach. The authors describe all relevant superconducting phenomena and rely on the macroscopic Ginzburg-Landau theory to derive the most important results. Examples are chosen from selected conventional superconductors like NbTi and compared to those of high-Tc materials. The text should be of interest to students and researchers in all branches of science and engineering, with the possible exception of theoretical physicists, who may require a more mathematical approach.