Download Free High Strength Concrete Book in PDF and EPUB Free Download. You can read online High Strength Concrete and write the review.

When produced correctly, concrete can be extremely strong, with high load-bearing capacity and superior durability. Another noteworthy property is the relatively low amount of energy and resources consumed during production. Super-High-Strength High Performance Concrete brings together the results of a major research project by the National Natural Science Foundation of China and the Doctoral Foundation of the Ministry of Education of China. This ten-year project explored the properties, performance, and potential of super-high-strength high performance (SHSHP) concrete. With a view towards improved production that optimizes the strength and durability of concrete, the book presents a host of topics on the cutting edge of concrete research. These include: A new method for the specific strength analysis of the pozzolanic effect of active mineral admixtures Analysis of the strength composition of SHSHP concrete Optimization of raw materials and mix proportion parameters for strength and flowability Analysis of the mechanical properties, deformation, and durability of SHSHP concrete Methods for decreasing autogeneous shrinkage Testing methods for SHSHP concrete The book concludes with a consideration of the practical and economic benefits of these optimized concretes. A systematic study of the different aspects of this essential commodity as well as the future direction of concrete science and technology, this book is a valuable resource for material scientists and engineers engaged in developing better structures.
This practical book from a highly experienced author presents clearly the means and methods for designing, producing and using high-strength concrete. High-strength concrete offers many benefits. Higher compressive strengths allow for a reduction in the cross-sectional dimensions of columns and walls in buildings. Its greater stiffness allows for increasing building heights while controlling sway and occupant comfort. Civil structures such as bridges have benefited from greater span lengths, shallower beam sections, wider girder spacing, and extended service life. Illustrated with real life examples, through documented case histories, High-Strength Concrete will be a valuable resource for contractors, producers, inspection agencies, as well as engineers and researchers.
High performance concrete is a key element in virtually all-large construction projects, from tall office and residential buildings to bridges, tunnels and roadways. The fully updated Second Edition helps professionals to understand the performance capabilities of these construction materials when selecting the type of concrete to use for particular projects. The author is one of the worlds acknowledged experts on high performance concrete.
A complete review of the fast-developing topic of high performance concrete (HPC) by one of the leading researchers in the field. It covers all aspects of HPC from materials, properties and technology, to construction and testing. The book will be valuable for all concrete technologists and construction engineers wishing to take advantage of the re
High performance concrete is a key element in virtually all-large construction projects, from tall office and residential buildings to bridges, tunnels and roadways. The fully updated Second Edition helps professionals to understand the performance capabilities of these construction materials when selecting the type of concrete to use for particular projects. The author is one of the worlds acknowledged experts on high performance concrete.
Selected chapters from the German concrete yearbook are now being published in the new English "Beton-Kalender Series" for the benefit of an international audience. Since it was founded in 1906, the Ernst & Sohn "Beton-Kalender" has been supporting developments in reinforced and prestressed concrete. The aim was to publish a yearbook to reflect progress in "ferro-concrete" structures until - as the book's first editor, Fritz von Emperger (1862-1942), expressed it - the "tempestuous development" in this form of construction came to an end. However, the "Beton-Kalender" quickly became the chosen work of reference for civil and structural engineers, and apart from the years 1945-1950 has been published annually ever since. Ultra high performance concrete (UHPC) is a milestone in concrete technology and application. It permits the construction of both more slender and more durable concrete structures with a prolonged service life and thus improved sustainability. This book is a comprehensive overview of UHPC - from the principles behind its production and its mechanical properties to design and detailing aspects. The focus is on the material behaviour of steel fibre-reinforced UHPC. Numerical modelling and detailing of the connections with reinforced concrete elements are featured as well. Numerous examples worldwide - bridges, columns, facades and roofs - are the basis for additional explanations about the benefits of UHPC and how it helps to realise several architectural requirements. The authors are extensively involved in the testing, design, construction and monitoring of UHPC structures. What they provide here is therefore a unique synopsis of the state of the art with a view to practical applications.
High Strength/High Performance Concrete (HSC/HPC) continues to be the object of particular interest and extensive research, and its use in construction is increasing continuously. fib Bulletin 42 summarises the available information on the material behaviour of HSC/HPC, and develops a set of code-type constitutive relations as an extension of CEB-FIP Model Code 1990. Literature on experimental data and international guidelines, standards and recommendations were reviewed, and already-existing constitutive relations and models were evaluated. In addition to a number of material laws chosen and adjusted for this report, some new constitutive relations were developed based on the collected data. The criteria for the choice of the existing relations as well as the development of the new constitutive relations involved their simplicity and operationality (code-type mathematical formulations). Furthermore, they had to be physically sound and if possible describe the behaviour of both high-performance and normal strength concretes by a unique relation. Finally, compliance with the specifications given in the CEB-FIP Model Code 1990 was examined. This State-of-art report is intended for engineers and represents a summary of the relevant knowledge available to and possessed by the members of the Task Group at the time of its drafting.
Development of Ultra-High Performance Concrete against Blasts: From Materials to Structures presents a detailed overview of UHPC development and its related applications in an era of rising terrorism around the world. Chapters present case studies on the novel development of the new generation of UHPC with nano additives. Field blast test results on reinforced concrete columns made with UHPC and UHPC filled double-skin tubes columns are also presented and compiled, as is the residual load-carrying capacities of blast-damaged structural members and the exceptional performance of novel UHPC materials that illustrate its potential in protective structural design. As a notable representative, ultra-high performance concrete (UHPC) has now been widely investigated by government agencies and universities. UHPC inherits many positive aspects of ultra-high strength concrete (UHSC) and is equipped with improved ductility as a result of fiber addition. These features make it an ideal construction material for bridge decks, storage halls, thin-wall shell structures, and other infrastructure because of its protective properties against seismic, impact and blast loads. Focuses on the principles behind UHPC production, properties, design and detailing aspects Presents a series of case studies and filed blast tests on columns and slabs Focuses on applications and future developments
Concrete is widely used because of its versatility, affordability, and availability of raw materials, strength, and durability. Urban development that took place through the world in the last few decades yielded significant developments for concrete technology. The term high-performance concrete (HPC) is relatively new, and it refers to many properties such as strength, durability, sound and heat insulation, waterproofing, and side advantages such as air purification, self-cleaning, etc. Researchers and engineers are constantly working for improving concrete properties. This book provides the state of the art on recent progress in the high-performance concrete applications written by researchers and experts of the field. The book should be useful to graduate students, researchers, and practicing engineers in related fields.
The first book of its kind to provide, in one volume, a highly practical and concise guide to the subject. It starts by reviewing the fundamentals of cement technology and then proceeds to deal with applications in producing high strength high performance concretes using the various means and mineral admixtures to produce such concretes.