Download Free High Speed Spectral Infrared Imaging Of Spark Ignition Engine Combustion Book in PDF and EPUB Free Download. You can read online High Speed Spectral Infrared Imaging Of Spark Ignition Engine Combustion and write the review.

Combustion processes in a spark-ignition engine were studied by using a high speed multi-spectral infrared camera system and a new robust statistical analysis method. Among the variables in the experiment are fuel and fuel additives. The images were obtained using Rutgers Super Imaging System, which consists of four spatial infrared cameras. The cameras are designed to be spatially aligned and their wavelengths are 3.8 mu m, 2.09 mu m, 3.48 mu m, 2.47 mu m. Each camera consists of a Pt-Si charge-coupled device with a pixel array of 64 x 64 and a depth of 12 bits. The engine used is a 1999 Ford Mustang 4.6L engine. This engine was modified to allow optical access by means of a bowditch method. The piston was redesigned for this study. Instead of graphite rings, metallic rings and oil lubricant were used to seal the combustion chamber. A statistical analysis tool (CASAT) was developed to analyze infrared images. This tool included multiple methods for statistically analyzing the fuels, most notably the novel method time derivative spatial averaging (TDSA). The ultimate goal of the research was to verify the capabilities of the TDSA method. This was achieved via a blind study, consisting of 10 unknown fuels; 2 base fuels and 8 fuels with additives. The results of the TDSA method predicted four fuels had various amounts of an octane improver, and the other four had a cetane improver. The actual results were octane improver and combustion enhancer. The effects of a cetane improver of gasoline and the effects of a combustion enhancer of gasoline are very similar.
The study was to investigate in-cylinder events of a direct injection-type diesel engine by using a new high-speed infrared (IR) digital imaging systems for obtaining information that was difficult to achieve by the conventional devices. For this, a new high-speed dual-spectra infrared digital imaging system was developed to simultaneously capture two geometrically identical (in respective spectral) sets of IR images having discrete digital information in a (64x64) matrix at rates as high as over 1,800 frames/sec each with exposure period as short as 20 micron sec. At the same time, a new advanced four-color W imaging system was constructed. The first two sets of spectral data were the radiation from water vapor emission bands to compute the distributions of temperature and specie in the gaseous mixture and the remaining two sets of data were to find the instantaneous temperature distribution over the cylinder surface. More than eight reviewed publications have been produced to report many new findings including: Distributions of Water Vapor and Temperature in a Flame; End Gas Images Prior to Onset of Knock; Effect of MTBE on Diesel Combustion; Impact of Oxygen Enrichment on In-cylinder Reactions; Spectral IR Images of Spray Plume; Residual Gas Distribution; Preflame Reactions in Diesel Combustion; Preflame Reactions in the End Gas of an SI Engine; Postflame Oxidation; and Liquid Fuel Layers during Combustion in an SI Engine. In addition, some computational analysis of diesel combustion was performed using KIVA-II program in order to compare results from the prediction and the measurements made using the new IR imaging diagnostic tool.
The study was to investigate in-cylinder events of a direct injection-type diesel engine by using a new high-speed infrared (IR) digital imaging systems for obtaining information that was difficult to achieve by the conventional devices. For this, a new high-speed-dual-spectra infrared digital imaging system was developed to simultaneously capture two geometrically identical (in respective spectral) sets of IR images having discrete digital information in a (64x64) matrix at rates as high as over 1,800 frames/sec each with exposure period as short as 20 usec. At the same time, a new advanced four-color IR imaging system was constructed. The first two sets of spectral data were the radiation from water vapor emission bands to compute the distributions of temperature and specie in the gaseous mixture and the remaining two sets of data were to find the instantaneous temperature distribution over the cylinder surface. More than eight reviewed publications have been produced to report many new findings including: Distributions of Water Vapor and Temperature in a Flame; End Gas Images Prior to Onset of Knock; Effect of MTBE on Diesel Combustion; Impact of Oxygen Enrichment on In-cylinder Reactions; Spectral IR Images of Spray Plume; Residual Gas Distribution; Preflame Reactions in Diesel Combustion; Preflame Reactions in the End Gas of an SI Engine; Postflame Oxidation; and Liquid Fuel Layers during Combustion in an SI Engine. In addition, some computational analysis of diesel combustion was performed using KIVA-II program in order to compare results from the prediction and the measurements made using the new IR imaging diagnostic tool.
A key topic of many technical discussions has been the development of alternative fuels to power the compression ignition engine. Reasons for this include the desire to reduce the dependency on petroleum-based fuel and, at the same time, to reduce the particulate matter (PM) and NOx emissions. Also, there has been interest generated in the diesel engine because of the reduction in greenhouse gases that has been proposed during the 2008-2012 time frame in Europe and the regulations that affect diesel engines in the United States.
Many recent publications indicate that spark ignition (SI) engines equipped with the conventional port-injection fuel system (PIF) seem to have serious fuel-maldistribution problems, including the formation of liquid layers over the combustion chamber surfaces. It is reasonable to expect that such a maldistribution is an unfavorable condition for the flame propagation in the cylinder. The in-cylinder flame behaviors of a PIF-SI engine as fueled with gasoline are investigated by using the Rutgers high-speed spectral infrared imaging system. These results are then compared with those obtained from the same engine operated by gaseous fuels and other simple fuels. The results from the engine operated by gasoline reveal slowly burning fuel-rich local pockets under both fully warmed and room-temperature conditions. The local pockets seem to stem from the liquid layers formed over the surfaces during the intake period. The (invisible) post-flame oxidation of the rich pockets is observed to continue even after the exhaust valve opens. On the contrary, the same engine run with a gaseous fuel exhibits some predictable and 'clean' flame propagations. The new results obtained from the present study suggest that such a late oxidation of locally fuel-rich liquid pockets may be a significant cause for the emission of the engine-out unburned hydrocarbon (UHC). The sluggish consumption of the fuel there may also be a factor for reducing the thermal efficiency of the engine. A parametric study of this observation is performed to obtain a better understanding of the findings. (AN).
With the objective of achieving better investigation of engines-fuels by obtaining instantaneous quantitative imaging of in-cylinder processes, several steps have been taken for some years at Rutgers University. They are: (1) Construction of a new Multispectral high-speed infrared (IR) digital imaging system; (2) Development of spectrometric analysis methods; (3) Application of the above to real-world in-cylinder engine environments and simple flames. This paper reports some of results from these studies. The one-of-a-kind Rutgers IR imaging system was developed in order to simultaneously capture four geometrically (pixel-to-pixel) identical images in respective spectral bands of IR radiation issued from a combustion chamber at successive instants of time and high frame rates. In order to process the raw data gathered by this Rutgers system, three new spectrometric methods have been developed to date: (1) dual-band mapping method; (2) new band-ratio method; and (3) three-band iteration method. The former two methods were developed to obtain instantaneous distributions of temperature and water vapor concentrations, and the latter method is to simultaneously find those of temperature, water vapor and soot in gaseous mixtures, i.e., to achieve quantitative imaging. Applications of these techniques were made to both SI and CI engine combustion processes as well as bench-top burner flames. Discussion is made on the methods and new results.