Download Free High Speed Imaging And Analysis Of The Solidification Of Undercooled Alloy Melts Book in PDF and EPUB Free Download. You can read online High Speed Imaging And Analysis Of The Solidification Of Undercooled Alloy Melts and write the review.

All metallic materials are prepared from the liquid state as their parent phase. Solidification is therefore one of the most important phase transformation in daily human life. Solidification is the transition from liquid to solid state of matter. The conditions under which material is transformed determines the physical and chemical properties of the as-solidified body. The processes involved, like nucleation and crystal growth, are governed by heat and mass transport. Convection and undercooling provide additional processing parameters to tune the solidification process and to control solid material performance from the very beginning of the production chain. To develop a predictive capability for efficient materials production the processes involved in solidification have to be understood in detail. This book provides a comprehensive overview of the solidification of metallic melts processed and undercooled in a containerless manner by drop tube, electromagnetic and electrostatic levitation, and experiments in reduced gravity. The experiments are accompanied by model calculations on the influence of thermodynamic and hydrodynamic conditions that control selection of nucleation mechanisms and modify crystal growth development throughout the solidification process.
This text comprises a collection of papers from the Merton C. Flemings Symposium held on the MIT campus in June, 2000. The papers cover such topics as dendritic solidification dynamics, control of casting quality, interdendritic fluid flow, semi-solid processing, and engineering education.
Presenting papers from the 2013 annual meeting of The Minerals, Metals & Materials Society (TMS), this volume covers developments in all aspects of high temperature electrochemistry, from the fundamental to the empirical and from the theoretical to the applied.
This book explores the application of external physical fields to the solidification processing of metallic alloys. Leading academics from around the world present comprehensive and critical reviews on state-of-the-art research and discuss possible future directions. Major physical fields, including electromagnetic, electric, acoustic, and thermal, are considered. In addition, the most advanced synchrotron X-ray based real-time and in-situ studies and numerical modeling methodologies are reviewed and discussed, with a special emphasis on their applications to the solidification processes. Throughout, all chapters are illustrated with both historical and very recent research cases, including typical examples of in-situ studies, modeling, and simulation. This book contains essential knowledge and information suitable for a wide audience, from undergraduate and postgraduate students to academics, practicing researchers, and engineers in materials, metallurgy, and manufacturing.
An overview of the recent progress of research in computational physics and materials science. Particular topics are modelling of traffic flow and complex multi-scale solidification phenomena. The sections introduce novel research results of experts from a considerable diversity of disciplines such as physics, mathematical and computational modelling, nonlinear dynamics, materials sciences, statistical mechanics and foundry technique. The book intends to create a comprehensive and coherent image of the current research status and illustrates new simulation results of transport and interface dynamics by high resolution graphics. Various possible perspectives are formulated for future activities. Special emphasis is laid on exchanging experiences concerning numerical tools and on the bridging of the scales as is necessary in a variety of scientific and engineering applications. An interesting possibility along this line was the coupling of different computational approaches leading to hybrid simulations.
This book presents the physical concepts and tools to characterize and describe the formation of metastable solids from undercooled melts. Its aim is to facilitate understanding of the development of the science and technology of solidification of melts and to introduce new concepts within this exciting research field in order to fulfil the challenges of the future in the field of undercooled melts. A comprehensive description of the science and applications of the undercooling phenomenon is given. It is composed of several main parts: experimental techniques for undercooling; characterization of the undercooled melt as the first step in rapid solidification; introducing the concepts of modern theories of rapid dendrite and eutectic growth and their comparison with experimental results, and a survey of metastable materials formed from the non-equilibrium state of an undercooled melt.* Showing clear links to possible application of results obtained from basic research * The subject matter is multidisciplinary and will be of interest to material scientists, physicists, physical chemists, mechanical and electrical engineers
Presenting a comprehensive description of the theory and physics of high-intensity ultrasound, this book also deals with a wide range of problems associated with the industrial applications of ultrasound, mainly in the areas of metallurgy and mineral processing. The book is divided into three sections, and Part I introduces the reader to the theory and physics of high-intensity ultrasound. Part II considers the design of ultrasonic generators, mechanoacoustic radiators and other vibrational systems, as well as the control of acoustic parameters when vibrations are passed into a processed medium. Finally, Part III describes problems associated with various uses of high-intensity ultrasound in metallurgy. The applications of high-intensity ultrasound for metal shaping, thermal and thermochemical treatment, welding, cutting, refining, and surface hardening are also discussed here. This comprehensive monograph will provide an invaluable source of information, which has been largely unavailable in the West until now.