Download Free High Speed Devices And Circuits With Thz Applications Book in PDF and EPUB Free Download. You can read online High Speed Devices And Circuits With Thz Applications and write the review.

Presenting the cutting-edge results of new device developments and circuit implementations, High-Speed Devices and Circuits with THz Applications covers the recent advancements of nano devices for terahertz (THz) applications and the latest high-speed data rate connectivity technologies from system design to integrated circuit (IC) design, providing relevant standard activities and technical specifications. Featuring the contributions of leading experts from industry and academia, this pivotal work: Discusses THz sensing and imaging devices based on nano devices and materials Describes silicon on insulator (SOI) multigate nanowire field-effect transistors (FETs) Explains the theory underpinning nanoscale nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs), simulation methods, and their results Explores the physics of the silicon-germanium (SiGe) heterojunction bipolar transistor (HBT), as well as commercially available SiGe HBT devices and their applications Details aspects of THz IC design using standard silicon (Si) complementary metal-oxide-semiconductor (CMOS) devices, including experimental setups for measurements, detection methods, and more An essential text for the future of high-frequency engineering, High-Speed Devices and Circuits with THz Applications offers valuable insight into emerging technologies and product possibilities that are attractive in terms of mass production and compatibility with current manufacturing facilities.
Presenting the cutting-edge results of new device developments and circuit implementations, High-Speed Devices and Circuits with THz Applications covers the recent advancements of nano devices for terahertz (THz) applications and the latest high-speed data rate connectivity technologies from system design to integrated circuit (IC) design, providing relevant standard activities and technical specifications. Featuring the contributions of leading experts from industry and academia, this pivotal work: Discusses THz sensing and imaging devices based on nano devices and materials Describes silicon on insulator (SOI) multigate nanowire field-effect transistors (FETs) Explains the theory underpinning nanoscale nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs), simulation methods, and their results Explores the physics of the silicon-germanium (SiGe) heterojunction bipolar transistor (HBT), as well as commercially available SiGe HBT devices and their applications Details aspects of THz IC design using standard silicon (Si) complementary metal-oxide-semiconductor (CMOS) devices, including experimental setups for measurements, detection methods, and more An essential text for the future of high-frequency engineering, High-Speed Devices and Circuits with THz Applications offers valuable insight into emerging technologies and product possibilities that are attractive in terms of mass production and compatibility with current manufacturing facilities.
Advanced High Speed Devices covers five areas of advanced device technology: terahertz and high speed electronics, ultraviolet emitters and detectors, advanced III-V field effect transistors, III-N materials and devices, and SiC devices. These emerging areas have attracted a lot of attention and the up-to-date results presented in the book will be of interest to most device and electronics engineers and scientists. The contributors range from prominent academics, such as Professor Lester Eastman, to key US Government scientists, such as Dr Michael Wraback.
Nanoelectronic Device Applications Handbook gives a comprehensive snapshot of the state of the art in nanodevices for nanoelectronics applications. Combining breadth and depth, the book includes 68 chapters on topics that range from nano-scaled complementary metal–oxide–semiconductor (CMOS) devices through recent developments in nano capacitors and AlGaAs/GaAs devices. The contributors are world-renowned experts from academia and industry from around the globe. The handbook explores current research into potentially disruptive technologies for a post-CMOS world. These include: Nanoscale advances in current MOSFET/CMOS technology Nano capacitors for applications such as electronics packaging and humidity sensors Single electron transistors and other electron tunneling devices Quantum cellular automata and nanomagnetic logic Memristors as switching devices and for memory Graphene preparation, properties, and devices Carbon nanotubes (CNTs), both single CNT and random network Other CNT applications such as terahertz, sensors, interconnects, and capacitors Nano system architectures for reliability Nanowire device fabrication and applications Nanowire transistors Nanodevices for spintronics The book closes with a call for a new generation of simulation tools to handle nanoscale mechanisms in realistic nanodevice geometries. This timely handbook offers a wealth of insights into the application of nanoelectronics. It is an invaluable reference and source of ideas for anyone working in the rapidly expanding field of nanoelectronics.
Microsystems technologies have found their way into an impressive variety of applications, from mobile phones, computers, and displays to smart grids, electric cars, and space shuttles. This multidisciplinary field of research extends the current capabilities of standard integrated circuits in terms of materials and designs and complements them by creating innovative components and smaller systems that require lower power consumption and display better performance. Novel Advances in Microsystems Technologies and their Applications delves into the state of the art and the applications of microsystems and microelectronics-related technologies. Featuring contributions by academic and industrial researchers from around the world, this book: Examines organic and flexible electronics, from polymer solar cell to flexible interconnects for the co-integration of micro-electromechanical systems (MEMS) with complementary metal oxide semiconductors (CMOS) Discusses imaging and display technologies, including MEMS technology in reflective displays, the fabrication of thin-film transistors on glass substrates, and new techniques to display and quickly transmit high-quality images Explores sensor technologies for sensing electrical currents and temperature, monitoring structural health and critical industrial processes, and more Covers biomedical microsystems, including biosensors, point-of-care devices, neural stimulation and recording, and ultra-low-power biomedical systems Written for researchers, engineers, and graduate students in electrical and biomedical engineering, this book reviews groundbreaking technology, trends, and applications in microelectronics. Its coverage of the latest research serves as a source of inspiration for anyone interested in further developing microsystems technologies and creating new applications.
This book is the first standalone book that combines research into low-noise amplifiers (LNAs) with research into millimeter-wave circuits. In compiling this book, the authors have set two research objectives. The first is to bring together the research context behind millimeter-wave circuit operation and the theory of low-noise amplification. The second is to present new research in this multi-disciplinary field by dividing the common LNA configurations and typical specifications into subsystems, which are then optimized separately to suggest improvements in the current state-of-the-art designs. To achieve the second research objective, the state-of-the-art LNA configurations are discussed and the weaknesses of state-of the art configurations are considered, thus identifying research gaps. Such research gaps, among others, point towards optimization – at a systems and microelectronics level. Optimization topics include the influence of short wavelength, layout and crosstalk on LNA performance. Advanced fabrication technologies used to decrease the parasitics of passive and active devices are also explored, together with packaging technologies such as silicon-on-chip and silicon-on-package, which are proposed as alternatives to traditional IC implementation. This research outcome builds through innovation. Innovative ideas for LNA construction are explored, and alternative design methodologies are deployed, including LNA/antenna co-design or utilization of the electronic design automation in the research flow. The book also offers the authors’ proposal for streamlined automated LNA design flow, which focuses on LNA as a collection of highly optimized subsystems.
An increasing number of technologies are being used to detect minute quantities of biomolecules and cells. However, it can be difficult to determine which technologies show the most promise for high-sensitivity and low-limit detection in different applications. Microfluidics and Nanotechnology: Biosensing to the Single Molecule Limit details proven approaches for the detection of single cells and even single molecules—approaches employed by the world’s foremost microfluidics and nanotechnology laboratories. While similar books concentrate only on microfluidics or nanotechnology, this book focuses on the combination of soft materials (elastomers and other polymers) with hard materials (semiconductors, metals, and glass) to form integrated detection systems for biological and chemical targets. It explores physical and chemical—as well as contact and noncontact—detection methods, using case studies to demonstrate system capabilities. Presenting a snapshot of the current state of the art, the text: Explains the theory behind different detection techniques, from mechanical resonators for detecting cell density to fiber-optic methods for detecting DNA hybridization, and beyond Examines microfluidic advances, including droplet microfluidics, digital microfluidics for manipulating droplets on the microscale, and more Highlights an array of technologies to allow for a comparison of the fundamental advantages and challenges of each, as well as an appreciation of the power of leveraging scalability and integration to achieve sensitivity at low cost Microfluidics and Nanotechnology: Biosensing to the Single Molecule Limit not only serves as a quick reference for the latest achievements in biochemical detection at the single-cell and single-molecule levels, but also provides researchers with inspiration for further innovation and expansion of the field.
One of the first publications of its kind in the exciting field of multiple input multiple output (MIMO) power line communications (PLC), MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing contains contributions from experts in industry and academia, making it practical enough to provide a solid understanding of how PLC technologies work, yet scientific enough to form a base for ongoing R&D activities. This book is subdivided into five thematic parts. Part I looks at narrow- and broadband channel characterization based on measurements from around the globe. Taking into account current regulations and electromagnetic compatibility (EMC), part II describes MIMO signal processing strategies and related capacity and throughput estimates. Current narrow- and broadband PLC standards and specifications are described in the various chapters of part III. Advanced PLC processing options are treated in part IV, drawing from a wide variety of research areas such as beamforming/precoding, time reversal, multi-user processing, and relaying. Lastly, part V contains case studies and field trials, where the advanced technologies of tomorrow are put into practice today. Suitable as a reference or a handbook, MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing features self-contained chapters with extensive cross-referencing to allow for a flexible reading path.
Exciting new developments are enabling sensors to go beyond the realm of simple sensing of movement or capture of images to deliver information such as location in a built environment, the sense of touch, and the presence of chemicals. These sensors unlock the potential for smarter systems, allowing machines to interact with the world around them in more intelligent and sophisticated ways. Featuring contributions from authors working at the leading edge of sensor technology, Technologies for Smart Sensors and Sensor Fusion showcases the latest advancements in sensors with biotechnology, medical science, chemical detection, environmental monitoring, automotive, and industrial applications. This valuable reference describes the increasingly varied number of sensors that can be integrated into arrays, and examines the growing availability and computational power of communication devices that support the algorithms needed to reduce the raw sensor data from multiple sensors and convert it into the information needed by the sensor array to enable rapid transmission of the results to the required point. Using both SI and US units, the text: Provides a fundamental and analytical understanding of the underlying technology for smart sensors Discusses groundbreaking software and sensor systems as well as key issues surrounding sensor fusion Exemplifies the richness and diversity of development work in the world of smart sensors and sensor fusion Offering fresh insight into the sensors of the future, Technologies for Smart Sensors and Sensor Fusion not only exposes readers to trends but also inspires innovation in smart sensor and sensor system development.
The utilization of sensors, communications, and computer technologies to create greater efficiency in the generation, transmission, distribution, and consumption of electricity will enable better management of the electric power system. As the use of smart grid technologies grows, utilities will be able to automate meter reading and billing and consumers will be more aware of their energy usage and the associated costs. The results will require utilities and their suppliers to develop new business models, strategies, and processes. With an emphasis on reducing costs and improving return on investment (ROI) for utilities, Smart Grids: Clouds, Communications, Open Source, and Automation explores the design and implementation of smart grid technologies, considering the benefits to consumers as well as businesses. Focusing on industrial applications, the text: Provides a state-of-the-art account of the smart grid Explains how smart grid technologies are currently being used Includes detailed examples and test cases for real-life implementation Discusses trade-offs associated with the utilization of smart grid technologies Describes smart grid simulation software and offers insight into the future of the smart grid The electric power grid is in the early stages of a sea of change. Nobody knows which business models will survive, but companies heeding the lessons found in Smart Grids: Clouds, Communications, Open Source, and Automation might just increase their chances for success.