Download Free High Speed Decoders For Polar Codes Book in PDF and EPUB Free Download. You can read online High Speed Decoders For Polar Codes and write the review.

A new class of provably capacity achieving error-correction codes, polar codes are suitable for many problems, such as lossless and lossy source coding, problems with side information, multiple access channel, etc. The first comprehensive book on the implementation of decoders for polar codes, the authors take a tutorial approach to explain the practical decoder implementation challenges and trade-offs in either software or hardware. They also demonstrate new trade-offs in latency, throughput, and complexity in software implementations for high-performance computing and GPGPUs, and hardware implementations using custom processing elements, full-custom application-specific integrated circuits (ASICs), and field-programmable-gate arrays (FPGAs). Presenting a good overview of this research area and future directions, High-Speed Decoders for Polar Codes is perfect for any researcher or SDR practitioner looking into implementing efficient decoders for polar codes, as well as students and professors in a modern error correction class. As polar codes have been accepted to protect the control channel in the next-generation mobile communication standard (5G) developed by the 3GPP, the audience includes engineers who will have to implement decoders for such codes and hardware engineers designing the backbone of communication networks.
This book constitutes the thoroughly refereed conference proceedings of the First International Workshop on Design and Architecture for Signal and Image Processing, DASIP 2022, held in Budaypest, Hungary in June 2022. The 13 full included in the volume were carefully reviewed and selected from 32 submissions. They are organized in the following topical sections: leading signal, image and video processing and machine learning in custom embedded, edge and cloud computing architectures and systems.
Providing in-depth treatment of error correction Error Correction Coding: Mathematical Methods and Algorithms, 2nd Edition provides a comprehensive introduction to classical and modern methods of error correction. The presentation provides a clear, practical introduction to using a lab-oriented approach. Readers are encouraged to implement the encoding and decoding algorithms with explicit algorithm statements and the mathematics used in error correction, balanced with an algorithmic development on how to actually do the encoding and decoding. Both block and stream (convolutional) codes are discussed, and the mathematics required to understand them are introduced on a “just-in-time” basis as the reader progresses through the book. The second edition increases the impact and reach of the book, updating it to discuss recent important technological advances. New material includes: Extensive coverage of LDPC codes, including a variety of decoding algorithms. A comprehensive introduction to polar codes, including systematic encoding/decoding and list decoding. An introduction to fountain codes. Modern applications to systems such as HDTV, DVBT2, and cell phones Error Correction Coding includes extensive program files (for example, C++ code for all LDPC decoders and polar code decoders), laboratory materials for students to implement algorithms, and an updated solutions manual, all of which are perfect to help the reader understand and retain the content. The book covers classical BCH, Reed Solomon, Golay, Reed Muller, Hamming, and convolutional codes which are still component codes in virtually every modern communication system. There are also fulsome discussions of recently developed polar codes and fountain codes that serve to educate the reader on the newest developments in error correction.
This book is an extensively elaborated treatise on sophisticated channel coding for advanced mobile communications. Setting out from the author's own experience of university teaching for over three decades, the book covers the most fundamental aspects of sophisticated channel coding ranging for advanced mobile communications beginning with general concepts of information theory and number theory, block coding including cyclic and convolutional codes, important aspects of permutation matrices and Kronecker products and Reed-Muller codes, over convolutional turbo codes and low density parity check (LDPC) codes to polar codes.
This handbook is an authoritative, comprehensive reference on optical networks, the backbone of today’s communication and information society. The book reviews the many underlying technologies that enable the global optical communications infrastructure, but also explains current research trends targeted towards continued capacity scaling and enhanced networking flexibility in support of an unabated traffic growth fueled by ever-emerging new applications. The book is divided into four parts: Optical Subsystems for Transmission and Switching, Core Networks, Datacenter and Super-Computer Networking, and Optical Access and Wireless Networks. Each chapter is written by world-renown experts that represent academia, industry, and international government and regulatory agencies. Every chapter provides a complete picture of its field, from entry-level information to a snapshot of the respective state-of-the-art technologies to emerging research trends, providing something useful for the novice who wants to get familiar with the field to the expert who wants to get a concise view of future trends.
This two-volume set LNICST 357-358 constitutes the post-conference proceedings of the 11th EAI International Conference on Wireless and Satellite Services, WiSATS 2020, held in Nanjing, China, in September 2020. The 91 full papers and workshop papers were carefully reviewed and selected from 200 submissions. Part I - LNICST 357 - details original research and results of wireless and satellite technology for a smarter global communication architecture. The theme of WISATS 2020 is “Intelligent Wireless and Satellite Communications for Beyond 5G”. Part II – LNICST 358 - presents 6 workshop papers: High Speed Space Communication and Space Information Networks (HSSCSIN); Integrated Space and Onboard Networks (ISON); Intelligent Satellite Operations, Managements, and Applications (ISOMA); Intelligent Satellites in Future Space Networked System (ISFSNS); Satellite Communications, Networking and Applications (SCNA); Satellite Internet of Things; Trusted Data Sharing, Secure Communication (SIOTTDSSC).
This book gives a detailed overview of a universal Maximum Likelihood (ML) decoding technique, known as Guessing Random Additive Noise Decoding (GRAND), has been introduced for short-length and high-rate linear block codes. The interest in short channel codes and the corresponding ML decoding algorithms has recently been reignited in both industry and academia due to emergence of applications with strict reliability and ultra-low latency requirements . A few of these applications include Machine-to-Machine (M2M) communication, augmented and virtual Reality, Intelligent Transportation Systems (ITS), the Internet of Things (IoTs), and Ultra-Reliable and Low Latency Communications (URLLC), which is an important use case for the 5G-NR standard. GRAND features both soft-input and hard-input variants. Moreover, there are traditional GRAND variants that can be used with any communication channel, and specialized GRAND variants that are developed for a specific communication channel. This book presents a detailed overview of these GRAND variants and their hardware architectures. The book is structured into four parts. Part 1 introduces linear block codes and the GRAND algorithm. Part 2 discusses the hardware architecture for traditional GRAND variants that can be applied to any underlying communication channel. Part 3 describes the hardware architectures for specialized GRAND variants developed for specific communication channels. Lastly, Part 4 provides an overview of recently proposed GRAND variants and their unique applications. This book is ideal for researchers or engineers looking to implement high-throughput and energy-efficient hardware for GRAND, as well as seasoned academics and graduate students interested in the topic of VLSI hardware architectures. Additionally, it can serve as reading material in graduate courses covering modern error correcting codes and Maximum Likelihood decoding for short codes.
5G NR: Architecture, Technology, Implementation, and Operation of 3GPP New Radio Standards is an in-depth, systematic, technical reference on 3GPP's New Radio standards (Release 15 and beyond), covering the underlying theory, functional descriptions, practical considerations, and implementation of the 5G new radio access technology. The book describes the design and operation of individual components and shows how they are integrated into the overall system and operate from a system's perspective. Uniquely, this book gives detailed information on RAN protocol layers, transports, network architectures, and services, as well as practical implementation and deployment issues, making it suitable for researchers and engineers who are designing and developing 5G systems.Reflecting on the author's 30 plus years of experience in signal processing, microelectronics, and wireless communication system design, this book is ideal for professional engineers, researchers, and graduate students who are working and researching in cellular communication systems and protocols as well as mobile broadband wireless standards. - Features strong focus on practical considerations, implementation, and deployment issues - Takes a top-down approach to explain system operation and functional interconnection - Covers all functional components, features, and interfaces based on clear protocol structure and block diagrams - Describes RF and transceiver design considerations in sub-6 GHz and mmWave bands - Covers network slicing, SDN/NFV/MEC networks and cloud, and virtualized RAN architectures - Comprehensive coverage of NR multiantenna techniques and beamformed operation - A consistent and integrated coverage reflecting the author's decades of experience in developing 3G, 4G, and 5G technologies and writing two successful books in these areas
This book provides a comprehensive overview of the latest research and standardization progress towards the 5th generation (5G) of mobile communications technology and beyond. It covers a wide range of topics from 5G use cases and their requirements, to spectrum, 5G end-to-end (E2E) system architecture including core network (CN), transport network (TN) and radio access network (RAN) architecture, network slicing, security and network management. It further dives into the detailed functional design and the evaluation of different 5G concepts, and provides details on planned trials and pre-commercial deployments across the globe. While the book naturally captures the latest agreements in 3rd Generation Partnership Project (3GPP) New Radio (NR) Release 15, it goes significantly beyond this by describing the likely developments towards the final 5G system that will ultimately utilize a wide range of spectrum bands, address all envisioned 5G use cases, and meet or exceed the International Mobile Telecommunications (IMT) requirements for the year 2020 and beyond (IMT-2020). 5G System Design: Architectural and Functional Considerations and Long Term Research is based on the knowledge and consensus from 158 leading researchers and standardization experts from 54 companies or institutes around the globe, representing key mobile network operators, network vendors, academic institutions and regional bodies for 5G. Different from earlier books on 5G, it does not focus on single 5G technology components, but describes the full 5G system design from E2E architecture to detailed functional design, including details on 5G performance, implementation and roll-out.