Download Free High Spatial Resolution Assessent Of The Structure Composition And Electronic Properties Of Nanowire Arrays Book in PDF and EPUB Free Download. You can read online High Spatial Resolution Assessent Of The Structure Composition And Electronic Properties Of Nanowire Arrays and write the review.

We have employed transmission electron microscopy (TEM) and analytical electron microscopy to perform preliminary assessment of the structure, composition and electronic properties of nanowire arrays at high spatial resolution. The two systems studied were bismuth and bismuth telluride nanowire arrays in alumina (wire diameters 40nm), both of which are promising for thermoelectric applications. Imaging coupled with diffraction in the TEM was employed to determine the grain size in electrodeposited Bi2Te3 nanowires. In addition, a composition gradient was identified along the wires in a short region near the electrode by energy-dispersive x-ray spectroscopy. Electron energy loss spectroscopy combined with energy-filtered imaging in the TEM revealed the excitation energy and spatial variation of plasmons in bismuth nanowire arrays.
This book provides a comprehensive summary of nanowire research in the past decade, from the nanowire synthesis, characterization, assembly, to the device applications. In particular, the developments of complex/modulated nanowire structures, the assembly of hierarchical nanowire arrays, and the applications in the fields of nanoelectronics, nanophotonics, quantum devices, nano-enabled energy, and nano-bio interfaces, are focused. Moreover, novel nanowire building blocks for the future/emerging nanoscience and nanotechnology are also discussed.Semiconducting nanowires represent one of the most interesting research directions in nanoscience and nanotechnology, with capabilities of realizing structural and functional complexity through rational design and synthesis. The exquisite control of chemical composition, morphology, structure, doping and assembly, as well as incorporation with other materials, offer a variety of nanoscale building blocks with unique properties.
Semiconductor nanowires promise to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications covers advanced materials for nanowires, the growth and synthesis of semiconductor nanowires—including methods such as solution growth, MOVPE, MBE, and self-organization. Characterizing the properties of semiconductor nanowires is covered in chapters describing studies using TEM, SPM, and Raman scattering. Applications of semiconductor nanowires are discussed in chapters focusing on solar cells, battery electrodes, sensors, optoelectronics and biology. Explores a selection of advanced materials for semiconductor nanowires Outlines key techniques for the property assessment and characterization of semiconductor nanowires Covers a broad range of applications across a number of fields
“Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.
Magnetic nanowires and microwires are key tools in the development ofenhanced devices for information technology (memory and data processing) andsensing. Offering the combined characteristics of high density, high speed, andnon-volatility, they facilitate reliable control of the motion of magnetic domainwalls; a key requirement for the development of novel classes of logic and storagedevices. Part One introduces the design and synthesis of magnetic nanowires andmicrowires, reviewing the growth and processing of nanowires and nanowireheterostructures using such methods as sol-gel and electrodepositioncombinations, focused-electron/ion-beam-induced deposition, chemicalvapour transport, quenching and drawing and magnetic interactions. Magneticand transport properties, alongside domain walls, in nano- and microwiresare then explored in Part Two, before Part Three goes on to explore a widerange of applications for magnetic nano- and microwire devices, includingmemory, microwave and electrochemical applications, in addition to thermalspin polarization and configuration, magnetocalorific effects and Bloch pointdynamics. Detailed coverage of multiple key techniques for the growth and processing of nanowires and microwires Reviews the principles and difficulties involved in applying magnetic nano- and microwires to a wide range of applications Combines the expertise of specialists from around the globe to give a broad overview of current and future trends
The book offers a new and complex perspective on the fabrication and use of electrodeposited nanowires for the design of efficient and competitive applications. While not pretending to be comprehensive, the book is addressing not only to researchers specialized in this field, but also to Ph.D. students, postdocs and experienced technical professionals.
Nano Tools and Devices for Enhanced Renewable Energy addresses key challenges faced in major energy sectors as the world strives for more affordable and renewable energy sources. The book collates and discusses the latest innovations in nanotechnology for energy applications, providing a comprehensive single resource for those interested in renewable energy. Chapters cover a range of nano tools and devices, as well as renewable energy types and sources, from energy storage to geothermal energy. Materials scientists, engineers and environmental scientists interested in the application and evaluation of innovative nano tools and devices in renewable energy technologies will find this book very valuable. Nanotechnology can help to reduce energy consumption and lessen toxicity burdens on the environment. Despite the rapid growth of development and use of nanotechnology in the modern world, there are still challenges faced by researchers and development groups in industry and academia. This book helps solve the problems of reduced accessibility of relevant research, presenting important information on adverse impacts on the environment, human health, safety and sustainability. Covers a range of nano tools and devices, as well as renewable energy types and sources, from energy storage to geothermal energy Offers an insight into the commercialization and regulatory aspects of nanotechnology for renewable energy Helps solve the problems of reduced accessibility of relevant information, presenting important research on adverse impacts on the environment, human health, safety and sustainability
After a short introduction and a brief review of the relation between carbon nanotubes, graphite and other forms of carbon, the synthesis techniques and growth mechanisms for carbon nanotubes are described. This is followed by reviews on nanotube electronic structure, electrical, optical, and mechanical properties, nanotube imaging and spectroscopy, and nanotube applications.