Download Free High Resolution Imaging In A Pet Scanner With Hybrid Depth Of Interaction Detectors Book in PDF and EPUB Free Download. You can read online High Resolution Imaging In A Pet Scanner With Hybrid Depth Of Interaction Detectors and write the review.

The combination of two leading imaging techniques – magnetic resonance imaging and positron emission tomography – is poised to have a large impact and has recently been a driver of research and clinical applications. The hybrid instrument is capable of acquiring both datasets simultaneously and this affords a number of advantages ranging from the obvious, two datasets acquired in the time required for one, through to novel applications. This book describes the basics of MRI and PET and then the technical issues and advantages involved in bringing together the two techniques. Novel applications in preclinical settings, human imaging and tracers are described. The book is for students and scientists entering the field of MR–PET with an MRI background but lacking PET or vice versa. It provides practical details from experts working in the area.
This book serves as a reference and comprehensive guide for PET/MR neuroimaging. The field of PET/MR is rapidly evolving, however, there is no standard resource summarizing the vast information and its potential applications. This book will guide neurological molecular imaging applications in both clinical practice and the research setting. Experts from multiple disciplines, including radiologists, researchers, and physicists, have collaborated to bring their knowledge and expertise together. Sections begin by covering general considerations, including public health and economic implications, the physics of PET/MR systems, an overview of hot lab and cyclotron, and radiotracers used in neurologic PET/MRI. There is then coverage of each major disease/systemic category, including dementia and neurodegenerative disease, epilepsy localization, brain tumors, inflammatory and infectious CNS disorders, head and neck imaging, as well as vascular hybrid imaging. Together, we have created a thorough, concise and up-to-date textbook in a unique, user-friendly format. This is an ideal guide for neuroradiologists, nuclear medicine specialists, medical physicists, clinical trainees and researchers.
This book is designed to give the reader a solid understanding of the physics and instrumentation aspects of PET, including how PET data are collected and formed into an image. Topics include basic physics, detector technology used in modern PET scanners, data acquisition, and 3D reconstruction. A variety of modern PET imaging systems are also discussed, including those designed for clinical services and research, as well as small-animal imaging. Methods for evaluating the performance of these systems are also outlined. The book will interest nuclear medicine students, nuclear medicine physicians, and technologists.
This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
This book provides an accessible and comprehensive overview of the state of the art in multimodal, multiparametric preclinical imaging, covering all the modalities used in preclinical research. The role of different combinations of PET, CT, MR, optical, and optoacoustic imaging methods is examined and explained for a range of applications, from research in oncology, neurology, and cardiology to drug development. Examples of animal studies are highlighted in which multimodal imaging has been pivotal in delivering otherwise unobtainable information. Hardware and software image registration methods and animal-specific factors are also discussed. The readily understandable text is enhanced by numerous informative illustrations that help the reader to appreciate the similarities to, but also the differences from, clinical applications. Image Fusion in Preclinical Applications will be of interest to all who wish to learn more about the use of multimodal/multiparametric imaging as a tool for in vivo investigations in preclinical medical and pharmaceutical research.
This book is a guide to new and emerging PET technology, instrumentation, and its place in clinical practice. PET technology is currently moving from the conventional photomultiplier tube (PMT) detector based PET to the new generation, solid state light sensor detector. This is a technological leap and holds significant implications for the use of PET imaging. This book introduces and describes the emerging and new generation of PET instrumentations and technologies across manufactures, focusing on solid-state PET detector designs, system characteristics, and clinical practices as well as future advanced Time-of-Flight (TOF) PET technologies. Organized into three sections, the basics of PET imaging; solid state digital PET instrumentation, technology, and clinical practice; and a look to the future of PET imaging, chapters present a full picture of PET imaging, where we are and where we will be. Nuclear medicine physicians, physicists, and technologists can use this book to better understand future PET systems, novel PET technologies, and potential game changes of clinical PET practice.
In this issue of PET Clinics, guest editors Arman Rahmim, Babak Saboury, and Eliot Siegel bring their considerable expertise to the topic of Artificial Intelligence and PET Imaging. - Provides in-depth, clinical reviews on the latest updates in AI and PET Imaging, providing actionable insights for clinical practice. - Presents the latest information on this timely, focused topic under the leadership of experienced editors in the field; Authors synthesize and distill the latest research and practice guidelines to create these timely topic-based reviews.
This book provides the reader with a comprehensive understanding of both the basic principles and the clinical applications of nuclear oncology imaging techniques. The authors have assembled a distinguished group of leaders in the field who provide valuable insight on the subject. The book also includes major chapters on the cancer patient and the pathophysiology of abnormal tissue, the evaluation of co-existing disease, and the diagnosis and therapy of specific tumors using functional imaging studies. Each chapter is heavily illustrated to assist the reader in understanding the clinical role of nuclear oncology in cancer disease therapy and management.
Clinical PET and PET/CT, 2nd Edition presents a valuable overview of the basic principles and clinical applications of PET and PET/CT. Emphasis is placed on the familiarization of normal distribution, artifacts, and common imaging agents such as FDG in conjunction with CT, MRI, and US to establish the clinical effectiveness of PET and PET/CT. Practical information about updated PET and PET/CT scanners, imaging processing, correlation, and quantification of PET and PET/CT measurements is also presented. This book is divided into two sections, the first half dealing with the basic principles of PET and PET/CT for instrumentation, fusion, radiopharmaceuticals, radiosynthesis, safety, and cost analysis. The second part of this volume presents chapters on the clinical techniques and applications of PET and PET/CT for common oncologic, cardiologic, and neurologic diseases. Numerous full color images provide comprehensive coverage on essential clinical PET and PET/CT studies.
PET and SPECT imaging has improved to such a level that they are opening up exciting new horizons in medical diagnosis and treatment. This book provides a complete introduction to fundamentals and the latest progress in the field, including an overview of new scintillator materials and innovations in photodetector development, as well as the latest system designs and image reconstruction algorithms. It begins with basics of PET and SPECT physics, followed by technology advances and computing methods, quantitative techniques, multimodality imaging, instrumentation, pre-clinical and clinical imaging applications.