Download Free High Precision X Ray Measurements Book in PDF and EPUB Free Download. You can read online High Precision X Ray Measurements and write the review.

Since their discovery in 1895, the detection of X-rays has had a strong impact on and various applications in several fields of science and human life. Impressive efforts have been made to develop new types of detectors and new techniques, aiming to obtain higher precision both in terms of energy and position. Depending on the applications, solid state detectors, microcalorimeters, and various types of spectrometers currently serve as the best options for spectroscopic and imaging detectors. Recent advancements in micron and meV precision have opened the door for groundbreaking applications in fundamental physics, medical science, astrophysics, cultural heritage, and several other fields. The aim of this Special Issue is to compile an overview, from different communities and research fields, of the most recent developments in X-ray detection and their possible impacts in various sectors, such as in exotic atom measurements, quantum physics studies, XRF, XES, EXAFS, plasma emission spectroscopy, monochromators, synchrotron radiation, telescopes, and space engineering. All the papers included in this Special Issue contribute to emphasizing the importance of X-ray detection in a very broad range of physics topics; most of these topics are covered by the published works, and several others are mentioned in the paper references, providing an interesting and very useful synopsis, from a variety of different communities and research fields, of the most recent developments in X-ray detection and their impact in fundamental research and societal applications.
Established by Congress in 1901, the National Bureau of Standards (NBS), now the National Institute of Standards and Technology (NIST), has a long and distinguished history as the custodian and disseminator of the United States' standards of physical measurement. Having reached its centennial anniversary, the NBS/NIST reflects on and celebrates its first century with this book describing some of its seminal contributions to science and technology. Within these pages are 102 vignettes that describe some of the Institute's classic publications. Each vignette relates the context in which the publication appeared, its impact on science, technology, and the general public, and brief details about the lives and work of the authors. The groundbreaking works depicted include: A breakthrough paper on laser-cooling of atoms below the Doppler limit, which led to the award of the 1997 Nobel Prize for Physics to William D. Phillips The official report on the development of the radio proximity fuse, one of the most important new weapons of World War II The 1932 paper reporting the discovery of deuterium in experiments that led to Harold Urey's1934 Nobel Prize for Chemistry A review of the development of the SEAC, the first digital computer to employ stored programs and the first to process images in digital form The first paper demonstrating that parity is not conserved in nuclear physics, a result that shattered a fundamental concept of theoretical physics and led to a Nobel Prize for T. D. Lee and C. Y. Yang "Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor," a 1995 paper that has already opened vast new areas of research A landmark contribution to the field of protein crystallography by Wlodawer and coworkers on the use of joint x-ray and neutron diffraction to determine the structure of proteins
In many respects, the science of materials has only fully utilized two of its three fundamental tools - the variables of temperature and chemical composition. Pressure, the third fundamental variable altering materials, is in many ways the most remarkable, as it spans some 60 orders of magnitude in the universe. High-pressure science has experienced tremendous growth, particularly in the last few years. With recent developments in static and dynamic compression techniques, extreme pressure and temperature conditions can now be produced and carefully controlled over a wide range. Moreover, a new generation of analytical probes, many based on third-generation synchrotron radiation sources, have been developed and can now be applied for accurate determination of the structural, dynamical, and electronic properties of matter under extreme conditions. Finally, developments in computational techniques and advances in fundamental theory tested against bountiful new experimental results are both deepening our understanding of materials as a whole and guiding subsequent experimental work with new predictions. It was for this reason that this course on high-pressure science was held at the International School of Physics "Enrico Fermi" School in July 2001. Though presented in a physics forum, the title “High-Pressure Phenomena” was chosen to reflect the broad scope of the field and the diversity of recent findings. Indeed, the field spans fundamental physics and chemistry, materials science and technology, the geosciences, planetary science and astrophysics, as well as biology. The highly interdisciplinary character of the field was central to the organization of the school, though the sheer breadth of the field meant that many topics could be treated in only a cursory fashion while others were examined more in depth. The aim of the school was to present the state-of-the-art in techniques used in modern high-pressure research, highlighting those topics where applications of these techniques are currently having a major impact.