Download Free High Performance Real Time Motion Control For Precision Systems Book in PDF and EPUB Free Download. You can read online High Performance Real Time Motion Control For Precision Systems and write the review.

This second edition of Precision Motion Control focuses on enabling technologies for precision engineering. It has been extensively edited and rewritten throughout with the following particular areas being expanded or added: • piezoelectric actuators • fine movement control • gantry-stage control • interpolation of quadrature encoder signals • geometrical error modeling for single-, dual- and general-XY-axis stages.
Precision manufacturing is a development that has been gathering momentum over the last century and accelerating over the last 25 years in terms of research, development, and application to product innovation. The driving force in this development arises from requirements for much higher performance of products, higher reliability, longer life, lower cost, and miniaturization. This development is widely known as precision engineering and, today, it is generally defined as manufacturing to tolerances which are better than one part in 105. Applications are abound and can be found in various semiconductor processes (e.g., lithography, wafer probing, inspection), Coordinate Measuring Machines (CMMs) and precision metrology systems (e.g., Scanning Probe Microscopy (SPM)), and robot/machine tools to carry out micro-assembly (e.g., MEMS) and delicate short wavelength laser processes. As an enabling technology for precision engineering, precision instrumentation and measurement, geometrical calibration and compensation, and motion control are directly important issues to be addressed in the overall system design and realization. This book is focused on these aspects of precision engineering. It is a compilation of the major results and publications from a major project which develop a state-of-the-art high-speed, ultra-precision robotic system. A comprehensive and thorough treatment of the subject matter is provided in a manner that is amenable to a broad base of readers, ranging from the academics to the practitioners, by providing detailed experimental verifications of the developed materials.
Modeling and Control of Precision Actuators explores new technologies that can ultimately be applied in a myriad of industries. It covers dynamical analysis of precise actuators and strategies of design for various control applications. The book addresses four main schemes: modeling and control of precise actuators; nonlinear control of precise actuators, including sliding mode control and neural network feedback control; fault detection and fault-tolerant control; and advanced air bearing control. It covers application issues in the modeling and control of precise actuators, providing several interesting case studies for more application-oriented readers. Introduces the driving forces behind precise actuators Describes nonlinear dynamics of precise actuators and their mathematical forms, including hysteresis, creep, friction, and force ripples Presents the control strategies for precise actuators based on Preisach model as well as creep dynamics Develops relay feedback techniques for identifying nonlinearities such as friction and force ripples Discusses a MPC approach based on piecewise affine models which emulate the frictional effects in the precise actuator Covers the concepts of air bearing stages with the corresponding control method Provides a set of schemes suitable for fault detection and accommodation control of mechanical systems Emphasizing design theory and control strategies, the book includes simulation and practical examples for each chapter; covers precise actuators such as piezo motors, coil motors, air bearing motors, and linear motors; discusses integration among different technologies; and includes three case studies in real projects. The book concludes by linking design methods and their applications, emphasizing the key issues involved and how to implement the precision motion control tasks in a practical system. It provides a concise and comprehensive source of the state-of-the-art developments and results for modeling and control of precise actuators.
The first ICANNGA conference, devoted to biologically inspired computational paradigms, Neural Net works and Genetic Algorithms, was held in Innsbruck, Austria, in 1993. The meeting attracted researchers from all over Europe and further afield, who decided that this particular blend of topics should form a theme for a series of biennial conferences. The second meeting, held in Ales, France, in 1995, carried on the tradition set in Innsbruck of a relaxed and stimulating environment for the. exchange of ideas. The series has continued in Norwich, UK, in 1997, and Portoroz, Slovenia, in 1999. The Institute of Computer Science, Czech Academy of Sciences, is pleased to host the fifth conference in Prague. We have chosen the Liechtenstein palace under the Prague Castle as the conference site to enhance the traditionally good atmosphere of the meeting. There is an inspirational genius loci of the historical center of the city, where four hundred years ago a fruitful combination of theoretical and empirical method, through the collaboration of Johannes Kepler and Tycho de Brahe, led to the discovery of the laws of planetary orbits.
During the past 20 years, the field of mechanical engineering has undergone enormous changes. These changes have been driven by many factors, including: the development of computer technology worldwide competition in industry improvements in the flow of information satellite communication real time monitoring increased energy efficiency robotics automatic control increased sensitivity to environmental impacts of human activities advances in design and manufacturing methods These developments have put more stress on mechanical engineering education, making it increasingly difficult to cover all the topics that a professional engineer will need in his or her career. As a result of these developments, there has been a growing need for a handbook that can serve the professional community by providing relevant background and current information in the field of mechanical engineering. The CRC Handbook of Mechanical Engineering serves the needs of the professional engineer as a resource of information into the next century.
Mechatronic systems are used in a range of consumer products from large-scale braking systems in vehicular agents to small-scale integrated sensors in mobile phones. To keep pace in the competitive consumer electronics industry, companies need to continuously improve servo evaluation and position control of these mechatronic systems. Advances in High-Performance Motion Control of Mechatronic Systems covers advanced control topics for mechatronic applications. In particular, the book examines control systems design for ultra-fast and ultra-precise positioning of mechanical actuators in mechatronic systems. The book systematically describes motion control design methods for trajectory design, sampled-data precise positioning, transient control using switching control, and dual-stage actuator control. Each method is described in detail, from theoretical aspects to examples of actual industry applications including hard disk drives, optical disk drives, galvano scanners, personal mobility robots, and more. This helps readers better understand how to translate control theories and algorithms from theory to design and implementation in realistic engineering systems. The book also identifies important research directions and advanced control techniques that may provide solutions for the next generation of high-performance mechatronics. Bridging research and industry, this book presents state-of-the-art control design methodologies that are widely applicable to industries such as manufacturing, robotics, home appliances, automobiles, printers, and optical drives. It guides readers toward more effective solutions for high-performance mechatronic systems in their own products.
Since they entered our world around the middle of the 20th century, the application of mechatronics has enhanced our lives with functionality based on the integration of electronics, control systems and electric drives. This book deals with the special class of mechatronics that has enabled the exceptional levels of accuracy and speed of high-tech equipment applied in the semiconductor industry, realising the continuous shrink in detailing of micro-electronics and MEMS. As well as the more frequently presented standard subjects of dynamics, motion control, electronics and electromechanics, this book includes an overview of systems engineering, optics and precision measurement systems, in an attempt to establish a connection between these fields under one umbrella. Robert Munnig Schmidt is emeritus professor in Mechatronic System Design at Delft University of Technology with industrial experience at Philips and ASML in research and development of consumer and high-tech systems. He is also director of RMS Acoustics & Mechatronics, doing research and development on active controlled low frequency sound systems. Georg Schitter is professor at the Automation and Control Institute (ACIN) at Vienna University of Technology with a standing track record in research on the control and mechatronic design of extremely fast precision motion systems such as video rate AFM systems. Adrian Rankers is managing partner of Mechatronics Academy, developing and delivering high level courses to the industrial community, based on industrial experience at Philips in the research and development of consumer and high-tech systems. He also teaches Mechatronics at the Eindhoven University of Technology. Jan van Eijk is emeritus professor in Advanced Mechatronics at Delft University of Technology. He is also director of MICE BV and partner at Mechatronics Academy, acting as industrial R&D advisor and teacher with experience at Philips in the research and development of consumer and high-tech systems.
The market demand for skills, knowledge and adaptability have positioned robotics to be an important field in both engineering and science. One of the most highly visible applications of robotics has been the robotic automation of many industrial tasks in factories. In the future, a new era will come in which we will see a greater success for robotics in non-industrial environments. In order to anticipate a wider deployment of intelligent and autonomous robots for tasks such as manufacturing, healthcare, ent- tainment, search and rescue, surveillance, exploration, and security missions, it is essential to push the frontier of robotics into a new dimension, one in which motion and intelligence play equally important roles. The 2010 International Conference on Intelligent Robotics and Applications (ICIRA 2010) was held in Shanghai, China, November 10–12, 2010. The theme of the c- ference was “Robotics Harmonizing Life,” a theme that reflects the ever-growing interest in research, development and applications in the dynamic and exciting areas of intelligent robotics. These volumes of Springer’s Lecture Notes in Artificial Intel- gence and Lecture Notes in Computer Science contain 140 high-quality papers, which were selected at least for the papers in general sessions, with a 62% acceptance rate Traditionally, ICIRA 2010 holds a series of plenary talks, and we were fortunate to have two such keynote speakers who shared their expertise with us in diverse topic areas spanning the rang of intelligent robotics and application activities.
This book consists of 113 selected papers presented at the 2015 International Conference on Mechanical Engineering and Control Systems (MECS2015), which was held in Wuhan, China during January 23-25, 2015. All accepted papers have been subjected to strict peer review by two to four expert referees, and selected based on originality, ability to test ideas and contribution to knowledge.MECS2015 focuses on eight main areas, namely, Mechanical Engineering, Automation, Computer Networks, Signal Processing, Pattern Recognition and Artificial Intelligence, Electrical Engineering, Material Engineering, and System Design. The conference provided an opportunity for researchers to exchange ideas and application experiences, and to establish business or research relations, finding global partners for future collaborations. The conference program was extremely rich, profound and featured high-impact presentations of selected papers and additional late-breaking contributions.
Featuring contributions from major technology vendors, industry consortia, and government and private research establishments, the Industrial Communication Technology Handbook, Second Edition provides comprehensive and authoritative coverage of wire- and wireless-based specialized communication networks used in plant and factory automation, automotive applications, avionics, building automation, energy and power systems, train applications, and more. New to the Second Edition: 46 brand-new chapters and 21 substantially revised chapters Inclusion of the latest, most significant developments in specialized communication technologies and systems Addition of new application domains for specialized networks The Industrial Communication Technology Handbook, Second Edition supplies readers with a thorough understanding of the application-specific requirements for communication services and their supporting technologies. It is useful to a broad spectrum of professionals involved in the conception, design, development, standardization, and use of specialized communication networks as well as academic institutions engaged in engineering education and vocational training.