Download Free High Performance Non Oxide Ceramics I Book in PDF and EPUB Free Download. You can read online High Performance Non Oxide Ceramics I and write the review.

The nitrides and carbides of boron and silicon are proving to be an excellent choice when selecting materials for the design of devices that are to be employed under particularly demanding environmental and thermal con- tions. The high degree of cross-linking, due to the preferred coordination numbers of the predominantly covalently bonded constituents equalling or exceeding three, lends these non-oxidic ceramics a high kinetic stability, and is regarded as the microscopic origin of their impressive thermal and mechanical durability. Thus it does not come as a surprise that the chemistry, the physical properties and the engineering of the corresponding binary, ternary, and even quaternary compounds have been the subject of intensive and sustained efforts in research and development. In the five reviews presented in the volumes 101 and 102 of "Structure and Bonding" an attempt has been made to cover both the essential and the most recent advances achieved in this particular field of materials research. The scope of the individual contributions is such as to address both graduate students, specializing in ceramic materials, and all scientists in academia or industry dealing with materials research and development. Each review provides, in its introductory part, the chemical, physical and, to some extent, historical background of the respective material, and then focuses on the most relevant and the most recent achievements.
The nitrides and carbides of boron and silicon are proving to be an excellent choice when selecting materials for the design of devices that are to be employed under particularly demanding environmental and thermal con- tions. The high degree of cross-linking, due to the preferred coordination numbers of the predominantly covalently bonded constituents equalling or exceeding three, lends these non-oxidic ceramics a high kinetic stability, and is regarded as the microscopic origin of their impressive thermal and mechanical durability. Thus it does not come as a surprise that the chemistry, the physical properties and the engineering of the corresponding binary, ternary, and even quaternary compounds have been the subject of intensive and sustained efforts in research and development. In the five reviews presented in the volumes 101 and 102 of "Structure and Bonding" an attempt has been made to cover both the essential and the most recent advances achieved in this particular field of materials research. The scope of the individual contributions is such as to address both graduate students, specializing in ceramic materials, and all scientists in academia or industry dealing with materials research and development. Each review provides, in its introductory part, the chemical, physical and, to some extent, historical background of the respective material, and then focuses on the most relevant and the most recent achievements.
The nitrides and carbides of boron and silicon are proving to be an excellent choice when selecting materials for the design of devices that are to be employed under particularly demanding environmental and thermal con- tions. The high degree of cross-linking, due to the preferred coordination numbers of the predominantly covalently bonded constituents equalling or exceeding three, lends these non-oxidic ceramics a high kinetic stability, and is regarded as the microscopic origin of their impressive thermal and mechanical durability. Thus it does not come as a surprise that the chemistry, the physical properties and the engineering of the corresponding binary, ternary, and even quaternary compounds have been the subject of intensive and sustained efforts in research and development. In the five reviews presented in the volumes 101 and 102 of "Structure and Bonding" an attempt has been made to cover both the essential and the most recent advances achieved in this particular field of materials research. The scope of the individual contributions is such as to address both graduate students, specializing in ceramic materials, and all scientists in academia or industry dealing with materials research and development. Each review provides, in its introductory part, the chemical, physical and, to some extent, historical background of the respective material, and then focuses on the most relevant and the most recent achievements.
The nitrides and carbides of boron and silicon are proving to be an excellent choice when selecting materials for the design of devices that are to be employed under particularly demanding environmental and thermal con- tions. The high degree of cross-linking, due to the preferred coordination numbers of the predominantly covalently bonded constituents equalling or exceeding three, lends these non-oxidic ceramics a high kinetic stability, and is regarded as the microscopic origin of their impressive thermal and mechanical durability. Thus it does not come as a surprise that the chemistry, the physical properties and the engineering of the corresponding binary, ternary, and even quaternary compounds have been the subject of intensive and sustained efforts in research and development. In the five reviews presented in the volumes 101 and 102 of "Structure and Bonding" an attempt has been made to cover both the essential and the most recent advances achieved in this particular field of materials research. The scope of the individual contributions is such as to address both graduate students, specializing in ceramic materials, and all scientists in academia or industry dealing with materials research and development. Each review provides, in its introductory part, the chemical, physical and, to some extent, historical background of the respective material, and then focuses on the most relevant and the most recent achievements.
The nitrides and carbides of boron and silicon are proving to be an excellent choice when selecting materials for the design of devices that are to be employed under particularly demanding environmental and thermal con- tions. The high degree of cross-linking, due to the preferred coordination numbers of the predominantly covalently bonded constituents equalling or exceeding three, lends these non-oxidic ceramics a high kinetic stability, and is regarded as the microscopic origin of their impressive thermal and mechanical durability. Thus it does not come as a surprise that the chemistry, the physical properties and the engineering of the corresponding binary, ternary, and even quaternary compounds have been the subject of intensive and sustained efforts in research and development. In the five reviews presented in the volumes 101 and 102 of "Structure and Bonding" an attempt has been made to cover both the essential and the most recent advances achieved in this particular field of materials research. The scope of the individual contributions is such as to address both graduate students, specializing in ceramic materials, and all scientists in academia or industry dealing with materials research and development. Each review provides, in its introductory part, the chemical, physical and, to some extent, historical background of the respective material, and then focuses on the most relevant and the most recent achievements.
"Corrosion of High-Performance Ceramics" is a comprehensive survey of the state of the art of this new field of research. It presents the first generalized description of the corrosion of engineering ceramics and its effect on their mechanical properties (based on Si3N4, SiC, AlN, B4C, BN, Al2O3, ZrO2). Researchers, engineers and graduate students are provided with a guide to the performance of non-oxide and oxide ceramicsin corrosive environments. Keywords: high-temperature oxidation; hot corrosion; corrosion in acids, alkalis and molten salts; effects of corrosion on the physico-mechanical properties of ceramics; stress corrosion; corrosion protection; development of oxidation-resistant ceramics; role of purity, donations and microstructure.
High-temperature ceramic fibers are the key components of ceramic matrix composites (CMCs). Ceramic fiber properties (strength, temperature and creep resistance, for example)-along with the debonding characteristics of their coatings-determine the properties of CMCs. This report outlines the state of the art in high-temperature ceramic fibers and coatings, assesses fibers and coatings in terms of future needs, and recommends promising avenues of research. CMCs are also discussed in this report to provide a context for discussing high-temperature ceramic fibers and coatings.