Download Free High Performance Millimeter Wave Transceiver Circuits For V Band Applications Using Silicon Processes Book in PDF and EPUB Free Download. You can read online High Performance Millimeter Wave Transceiver Circuits For V Band Applications Using Silicon Processes and write the review.

Build high-performance, energy-efficient circuits with this cutting-edge guide to designing, modeling, analysing, implementing and testing new mm-wave systems.
No matter how you slice it, semiconductor devices power the communications revolution. Skeptical? Imagine for a moment that you could flip a switch and instantly remove all the integrated circuits from planet Earth. A moment’s reflection would convince you that there is not a single field of human endeavor that would not come to a grinding halt, be it commerce, agriculture, education, medicine, or entertainment. Life, as we have come to expect it, would simply cease to exist. Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this volume covers SiGe circuit applications in the real world. Edited by John D. Cressler, with contributions from leading experts in the field, this book presents a broad overview of the merits of SiGe for emerging communications systems. Coverage spans new techniques for improved LNA design, RF to millimeter-wave IC design, SiGe MMICs, SiGe Millimeter-Wave ICs, and wireless building blocks using SiGe HBTs. The book provides a glimpse into the future, as envisioned by industry leaders.
This book focuses on the development of design techniques and methodologies for 60-GHz and E-band power amplifiers and transmitters at device, circuit and layout levels. The authors show the recent development of millimeter-wave design techniques, especially of power amplifiers and transmitters, and presents novel design concepts, such as “power transistor layout” and “4-way parallel-series power combiner”, that can enhance the output power and efficiency of power amplifiers in a compact silicon area. Five state-of-the-art 60-GHz and E-band designs with measured results are demonstrated to prove the effectiveness of the design concepts and hands-on methodologies presented. This book serves as a valuable reference for circuit designers to develop millimeter-wave building blocks for future 5G applications.
RF and mm-Wave Power Generation in Silicon presents the challenges and solutions of designing power amplifiers at RF and mm-Wave frequencies in a silicon-based process technology. It covers practical power amplifier design methodologies, energy- and spectrum-efficient power amplifier design examples in the RF frequency for cellular and wireless connectivity applications, and power amplifier and power generation designs for enabling new communication and sensing applications in the mm-Wave and THz frequencies. With this book you will learn: - Power amplifier design fundamentals and methodologies - Latest advances in silicon-based RF power amplifier architectures and designs and their integration in wireless communication systems - State-of-the-art mm-Wave/THz power amplifier and power generation circuits and systems in silicon - Extensive coverage from fundamentals to advanced design topics, focusing on various layers of abstraction: from device modeling and circuit design strategy to advanced digital and mixed-signal architectures for highly efficient and linear power amplifiers - New architectures for power amplifiers in the cellar and wireless connectivity covering detailed design methodologies and state-of-the-art performances - Detailed design techniques, trade-off analysis and design examples for efficiency enhancement at power back-off and linear amplification for spectrally-efficient non-constant envelope modulations - Extensive coverage of mm-Wave power-generation techniques from the early days of the 60 GHz research to current state-of the-art reconfigurable, digital mm-Wave PA architectures - Detailed analysis of power generation challenges in the higher mm-Wave and THz frequencies and novel technical solutions for a wide range for potential applications, including ultrafast wireless communication to sensing, imaging and spectroscopy - Contributions from the world-class experts from both academia and industry
The aim of this book is to present the modern design and analysis principles of millimeter-wave communication system for wireless devices and to give postgraduates and system professionals the design insights and challenges when integrating millimeter wave personal communication system. Millimeter wave communication system are going to play key roles in modern gigabit wireless communication area as millimeter-wave industrial standards from IEEE, European Computer Manufacturing Association (ECMA) and Wireless High Definition (Wireless HD) Group, are on their way to the market. The book will review up-to-date research results and utilize numerous design and analysis for the whole system covering from Millimeter wave frontend to digital signal processing in order to address major topics in a high speed wireless system. This book emphasizes the importance and the requirements of high-gain antennas, low power transceiver, adaptive equalizer/modulation, channeling coding and adaptive multi-user detection for gigabit wireless communications. In addition, the book will include the updated research literature and patents in the topics of transceivers, antennas, MIMO, channel capacity, coding, equalizer, Modem and multi-user detection. Finally the application of these antennas will be discussed in light of different forthcoming wireless standards at V-band and E-band.
A transistor-level, design-intensive overview of high speed and high frequency monolithic integrated circuits for wireless and broadband systems from 2 GHz to 200 GHz, this comprehensive text covers high-speed, RF, mm-wave, and optical fibre circuits using nanoscale CMOS, SiGe BiCMOS, and III-V technologies. Step-by-step design methodologies, end-of chapter problems, and practical simulation and design projects are provided, making this an ideal resource for senior undergraduate and graduate courses in circuit design. With an emphasis on device-circuit topology interaction and optimization, it gives circuit designers and students alike an in-depth understanding of device structures and process limitations affecting circuit performance.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Modern transceiver systems require diversified design aspects as various radio and sensor applications have emerged. Choosing the right architecture and understanding interference and linearity issues are important for multi-standard cellular transceivers and software-defined radios. A millimeter-wave complementary metal–oxide–semiconductor (CMOS) transceiver design for multi-Gb/s data transmission is another challenging area. Energy-efficient short-range radios for body area networks and sensor networks have recently received great attention. To meet different design requirements, gaining good system perspectives is important. Wireless Transceiver Circuits: System Perspectives and Design Aspects offers an in-depth look at integrated circuit (IC) design for modern transceiver circuits and wireless systems. Ranging in scope from system perspectives to practical circuit design for emerging wireless applications, this cutting-edge book: Provides system design considerations in modern transceiver design Covers both systems and circuits for the millimeter-wave transceiver design Introduces four energy-efficient short-range radios for biomedical and wireless connectivity applications Emphasizes key building blocks in modern transceivers and transmitters, including frequency synthesizers and digital-intensive phase modulators Featuring contributions from renowned international experts in industry and academia, Wireless Transceiver Circuits: System Perspectives and Design Aspects makes an ideal reference for engineers and researchers in the area of wireless systems and circuits.
There are continuous efforts focussed on improving road traffic safety worldwide. Numerous vehicle safety features have been invented and standardized over the past decades. Particularly interesting are the driver assistance systems, since these can considerably reduce the number of accidents by supporting drivers’ perception of their surroundings. Many driver assistance features rely on radar-based sensors. Nowadays the commercially available automotive front-end sensors are comprised of discrete components, thus making the radar modules highly-priced and suitable for integration only in premium class vehicles. Realization of low-cost radar fro- end circuits would enable their implementation in inexpensive economy cars, c- siderably contributing to traffic safety. Cost reduction requires high-level integration of the microwave front-end c- cuitry, specifically analog and digital circuit blocks co-located on a single chip. - cent developments of silicon-based technologies, e.g. CMOS and SiGe:C bipolar, make them suitable for realization of microwave sensors. Additionally, these te- nologies offer the necessary integration capability. However, the required output power and temperature stability, necessary for automotive radar sensor products, have not yet been achieved in standard digital CMOS technologies. On the other hand, SiGe bipolar technology offers excellent high-frequency characteristics and necessary output power for automotive applications, but has lower potential for - alization of digital blocks than CMOS.
During the past years, wireless communication systems have been rapidly advancing to meet the high data-rate requirements of various emerging applications. However, the existing transceivers have typically been demonstrated using CMOS-compatible technologies that deliver a relatively low equivalent isotropic radiated power in a small unit cell. Moreover, the particular device characteristics are limiting the linear region for operation. Therefore, the main focus of this dissertation is to present and discuss new design methods for transceivers to solve these issues. To reduce the complexity of the transceiver module for further phased-array scaling, a low-noise power amplifier design approach is designed using a 0.15-μm GaN-on-SiC high-electron mobility transistor technology (HEMT). Utilizing a traded off interstage matching topology between loss and bandwidth, the conversion loss induced by the matching network could be effectively reduced. A stacked-FET configuration was adopted to enhance the power handling of the RF switch. Further improvement on the isolation bandwidth was investigated using theoretical analysis on the intrinsic effect of the passive HEMTs. With the successful implementation of the RF front-end circuits, transceiver modules were integrated on Rogers RO3010 substrate. The planar dual exponentially tapered slot antenna phased-array system showed a compact size with simple biasing network compared to the conventional transceiver approach. The presented T/R module was characterized with an over-the-air test at a distance of 1 m, overcoming the free space path loss of 64 dB. It also shows a high flexibility for further integration with a larger number of array systems, which is very promising for future 5G communication systems.