Download Free High Nitrogen Steels Book in PDF and EPUB Free Download. You can read online High Nitrogen Steels and write the review.

Basic research and new manufacturing methods have led to high nitrogen steels (HNS), a promising new group of materials for use in advanced applications in mechanical and chemical engineering. The book deals with the atomic structure, constitution, properties, manufacturing and application of martensitic, austenitic, duplex and dualphase steels of superior strength and corrosion resistance. Combining metallurgy and engineering aspects. It gives a detailed overview and presents new results on HNS. The book is intended for scientists as well as technologists, who will find stimulating information.
High Interstitial Stainless Austenitic Steels is of interest to all engineers and resaerchers working with stainless steel, either at universities or R&D departments in Industry. The new applications described appeal to design engineers while procees engineers find interesting challenges. These novel steels enter more and more industrial applications. Their development is presented by this book in its entirety, starting from the electronic scale of components. This makes it particlularly attractive to Materials Scientists and Metal Physicists.
The need for alternate energy sources has led to the develop ment of prototype fusion and MHD reactors. Both possible energy systems in current designs usually require the use of magnetic fields for plasma confinement and concentration. For the creation and maintenance of large 5 to 15 tesla magnetic fields, supercon ducting magnets appear more economical. But the high magnetic fields create large forces, and the complexities of the conceptual reactors create severe space restrictions. The combination of re quirements, plus the desire to keep construction costs at a mini mum, has created a need for stronger structural alloys for service at liquid helium temperature (4 K). The complexity of the required structures requires that these alloys be weldable. Furthermore, since the plasma is influenced by magnetic fields and since magnet ic forces from the use of ferromagnetic materials in many configur ations may be additive, the best structural alloy for most applica tions should be nonmagnetic. These requirements have led to consideration of higher strength austenitic steels. Strength increases at low temperatures are achieved by the addition of nitrogen. The stability of the austenitic structure is retained by adding manganese instead of nickel, which is more expensive. Research to develop these higher strength austenitic steels is in process, primarily in Japan and the United States.
Stainless steel is still one of the fastest growing materials. Today, the austenitic stainless steel with the classic composition of 18% Cr and 8% Ni (grade 304L) is still the most widely used by far in the world. The unique characteristic of stainless steel arises from three main factors. The versatility results from high corrosion resistance, excellent low- and high-temperature properties, high toughness, formability, and weldability. The long life of stainless steels has been proven in service in a wide range of environments, together with low maintenance costs compared to other highly alloyed metallic materials. The retained value of stainless steel results from the high intrinsic value and easy recycling. Stainless steel, especially of austenitic microstructure, plays a crucial role in achieving sustainable development nowadays, so it is also important for further generations.
Materials science is the magic that allows us to change the chemical composition and microstructure of material to regulate its corrosion-mechanical, technological, and functional properties. Five major classes of stainless steels are widely used: ferritic, austenitic, martensitic, duplex, and precipitation hardening. Austenitic stainless steels are extensively used for service down to as low as the temperature of liquid helium (-269oC). This is largely due to the lack of a clearly defined transition from ductile to brittle fracture in impact toughness testing. Steels with ferritic or martensitic structures show a sudden change from ductile (safe) to brittle (unsafe) fracture over a small temperature difference. Even the best of these steels shows this behavior at temperatures higher than -100oC and in many cases only just below zero. Various types of stainless steel are used across the whole temperature range from ambient to 1100oC. This book will be useful to scientists, engineers, masters, graduate students, and students. I hope readers will enjoy this book and that it will serve to create new materials with unique properties.
This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods.
Duplex Stainless Steels (DSSs) are chromium-nickel-molybdenum-iron alloys that are usually in proportions optimized for equalizing the volume fractions of austenite and ferrite. Due to their ferritic-austenitic microstructure, they possess a higher mechanical strength and a better corrosion resistance than standard austenitic steels. This type of steel is now increasing its application and market field due to its very good properties and relatively low cost. This book is a review of the most recent progress achieved in the last 10 years on microstructure, corrosion resistance and mechanical strength properties, as well as applications, due to the development of new grades. Special attention will be given to fatigue and fracture behavior and to proposed models to account for mechanical behavior. Each subject will be developed in chapters written by experts recognized around the international industrial and scientific communities. The use of duplex stainless steels has grown rapidly in the last 10 years, particularly in the oil and gas industry, chemical tankers, pulp and paper as well as the chemical industry. In all these examples, topics like welding, corrosion resistance and mechanical strength properties (mainly in the fatigue domain) are crucial. Therefore, the update of welding and corrosion properties and the introduction of topics like texture effects, fatigue and fracture strength properties, and mechanical behavior modeling give this book specific focus and character.
Stainless steel, termed as the "miracle metal" is all around us in numerous applications ranging from everyday household items to sophisticated biomedical applications. Stainless steel is one of the fastest growing segments in metal industries. New developments and a wide range of research on stainless steel is taking place all around the world in order to obtain superior quality stainless steel and expand its applications to meet growing demands. Taking those facts into account, this book is compiles recent developments in the properties, applications and further processing of stainless steel and recent research trends. The book includes high-tech characterisation techniques of stainless steel to address the decomposition behaviour; decomposition-induced transformation to the correlated property-microstructure; powder metallurgy to produce difficult-to-cast stainless steel components, depassivation / repassivation behaviour, various surface treatment processes as well as a wide range of machining techniques to address the need of machinability of stainless steel.
This book evaluates the latest developments in nickel alloys and high-alloy special stainless steels by material number, price, wear rate in corrosive media, mechanical and metallurgical characteristics, weldability, and resistance to pitting and crevice corrosion. Nickel Alloys is at the forefront in the search for the most economic solutions to c