Download Free High Mountain Atmospheric Research Book in PDF and EPUB Free Download. You can read online High Mountain Atmospheric Research and write the review.

This book presents the results of 20 years of atmospheric composition research studies carried out at the high-mountain (2,165 m a.s.l.) Observatory "O. Vittori" in Italy, part of the only global station in the Mediterranean region that belongs to the World Meteorological Organization’s Global Atmosphere Watch (WMO/GAW). It provides a comprehensive study with updated results for the most important atmospheric climate-altering and pollutant compounds based on the continuous observations at Mt. Cimone. Further, the book addresses the following main research topics in atmospheric sciences: non-CO2 greenhouse gases, reactive gases, aerosol particles and natural radioactivity. The book also presents an overview of the measurement site (both in terms of its geographical location and technical facilities), as well as extensive climatology references (in the form of plots and tables) for the atmospheric compounds monitored there. As such, it offers a must-read for atmospheric scientists, stakeholders, undergraduate and graduate students in related fields.
This book provides case studies and general views of the main processes involved in the ecosystem shifts occurring in the high mountains and analyses the implications for nature conservation. Case studies from the Pyrenees are preponderant, with a comprehensive set of mountain ranges surrounded by highly populated lowland areas also being considered. The introductory and closing chapters will summarise the main challenges that nature conservation may face in mountain areas under the environmental shifting conditions. Further chapters put forward approaches from environmental geography, functional ecology, biogeography, and paleoenvironmental reconstructions. Organisms from microbes to large carnivores, and ecosystems from lakes to forest will be considered. This interdisciplinary book will appeal to researchers in mountain ecosystems, students and nature professionals. This book is open access under a CC BY license.
Generations of plant scientists have been fascinated by alpine plant lifean ecosystem that experiences dramatic climatic gradients over a very short distance. This comprehensive book examines a wide range of topics including alpine climate and soils, plant distribution and the treeline phenomenon, plant stress and development, global change at high elevation, and the human impact on alpine vegetation. Geographically, the book covers all parts of the world including the tropics.
This edited volume, showcasing cutting-edge research, addresses two primary questions - what are the main drivers of change in high-mountains and what are the risks implied by these changes? From a physical perspective, it examines the complex interplay between climate and the high-mountain cryosphere, with further chapters covering tectonics, volcano-ice interactions, hydrology, slope stability, erosion, ecosystems, and glacier- and snow-related hazards. Societal dimensions, both global and local, of high-mountain cryospheric change are also explored. The book offers unique perspectives on high-mountain cultures, livelihoods, governance and natural resources management, focusing on how global change influences societies and how people respond to climate-induced cryospheric changes. An invaluable reference for researchers and professionals in cryospheric science, geomorphology, climatology, environmental studies and human geography, this volume will also be of interest to practitioners working in global change and risk, including NGOs and policy advisors.
This book provides a comprehensive text describing and explaining mountain weather and climate processes. It presents the results of a broad range of studies drawn from across the world. The book is useful for specialist courses in climatology as well as for scientists in related disciplines.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
The use of infrasound to monitor the atmosphere has, like infrasound itself, gone largely unheard of through the years. But it has many applications, and it is about time that a book is being devoted to this fascinating subject. Our own involvement with infrasound occurred as graduate students of Prof. William Donn, who had established an infrasound array at the Lamont-Doherty Geological Observatory (now the Lamont-Doherty Earth Observatory) of Columbia University. It was a natural outgrowth of another major activity at Lamont, using seismic waves to explore the Earth’s interior. Both the atmosphere and the solid Earth feature velocity (seismic or acoustic) gradients in the vertical which act to refract the respective waves. The refraction in turn allows one to calculate the respective background structure in these mediums, indirectly exploring locations that are hard to observe otherwise. Monitoring these signals also allows one to discover various phenomena, both natural and man-made (some of which have military applications).