Download Free High Magnetic Fields In Semiconductor Physics Ii Book in PDF and EPUB Free Download. You can read online High Magnetic Fields In Semiconductor Physics Ii and write the review.

This volume contains contributions presented at the International Conference "The Application of High Magnetic Fields in Semiconductor Physics", which was held at the University of Wiirzburg from August 22 to 26, 1988. In the tradition of previous Wiirzburg meetings on the subject - the first conference was held in 1972 - only invited papers were presented orally. All 42 lecturers were asked to review their subject to some extent so that this book gives a good overview of the present state of the respective topic. A look at the contents shows that the subjects which have been treated at previous conferences have not lost their relevance. On the contrary, the application of high magnetic fields to semiconductors has grown substantially during the recent past. For the elucidation of the electronic band structure of semicon ductors high magnetic fields are still an indispensable tool. The investigation of two-dimensional electronic systems especially is frequently connected with the use of high magnetic fields. The reason for this is that a high B-field adds angular momentum quantization to the boundary quantization present in het erostructures and superlattices. A glance at the contributions shows that the majority deal with 2D properties. Special emphasis was on the integral and fractional quantum Hall effect. Very recent results related to the observation of a fraction with an even denbminator were presented. It became obvious that the polarization of the different fractional Landau levels is more complicated than originally anticipated.
This book summarizes most of the fundamental physical phenomena which semiconductors and their modulated structures exhibit in high magnetic fields. Readers can learn not only the basic theoretical background but also the present state of the art from the most advanced data in this rapidly growing research area.
This volume contains contributions presented at the 12th International Conference on High Magnetic Fields in Semiconductor Physics. In order to give an overview, 37 lecturers not only reviewed the latest results in their field, but also gave a general introduction. The rapid development of semiconductor physics and technology during the last few years has resulted in an extensive application of high magnetic fields in both fundamental and applied research; more than 160 contributed papers were presented as posters.Sixteen years after its discovery, the quantum Hall effect (QHE) is still a subject of high activity. Many new results on the fractional QHE were presented; in addition to 6 invited papers, there were 43 contributions. Another field of high activity is magneto-optics, and 49 posters were presented. Magnetotransport also turned out to be of high interest, and magnetic semiconductors played a prominent role at the conference, too.Without doubt, the availability of superconducting magnets in most laboratories contributed to the growth of semiconductor physics in high magnetic fields. Because not all experiments can be performed in fields up to 10 or 15 teslas, high magnetic field laboratories offering larger fields are indispensable. There were reports from four laboratories on present work going on at these installations.
High magnetic fields have, for a long time, been an important tool in the investigation of the electronic structure of semiconductors. In recent yearsstudies of heterostructures and superlattices have predominated, and this emphasis is reflected in these proceedings. The contributions concentrate on experiments using transport and optical methods, but recent theoretical developments are also covered. Special attention is paid to the quantum Hall effect, including the problem of edge currents, the influence of contacts, and Wigner condensation in the fractional quantum Hall effect regime. The 27 invited contributions by renowned expertsprovide an excellent survey of the field that is complemented by numerous contributed papers.
This comprehensive volume covers the latest research on high magnetic fields in semiconductor physics presented at the 16th International Conference (SemiMag 16), held in Tallahassee, Florida, August 2-8, 2004.The book features papers from more than 130 participants including the work of the foremost experts in the fields.Much of the most cutting-edge research is covered by the contributions as well as a special focused session on the recently discovered microwave-induced zero resistance effect.
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. Volumes 54 and 55 present contributions by leading researchers in the field of high pressure semiconductors. Edited by T. Suski and W. Paul, these volumes continue the tradition of well-known but outdated publications such as Brigman's The Physics of High Pressure (1931 and 1949) and High Pressure Physics and Chemistry edited by Bradley. Volumes 54 and 55 reflect the industrially important recent developments in research and applications of semiconductor properties and behavior under desirable risk-free conditions at high pressures. These developments include the advent of the diamond anvil cell technique and the availability of commercial piston cylinder apparatus operating at high hydrostatic pressures. These much-needed books will be useful to both researchers and practitioners in applied physics, materials science, and engineering.