Download Free High Level System Modeling Book in PDF and EPUB Free Download. You can read online High Level System Modeling and write the review.

In system design, generation of high-level abstract models that can be closely associated with evolving lower-level models provides designers with the ability to incrementally `test' an evolving design against a model of a specification. Such high-level models may deal with areas such as performance, reliability, availability, maintainability, and system safety. Abstract models also allow exploration of the hardware versus software design space in an incremental fashion as a fuller, detailed design unfolds, leaving behind the old practice of hardware-software binding too early in the design process. Such models may also allow the inclusion of non-functional aspects of design (e.g. space, power, heat) in a simulatable information model dealing with the system's operation. This book addresses Model Generation and Application specifically in the following domains: Specification modeling (linking object/data modeling, behavior modeling, and activity modeling). Operational specification modeling (modeling the way the system is supposed to operate - from a user's viewpoint). Linking non-functional parameters with specification models. Hybrid modeling (linking performance and functional elements). Application of high-level modeling to hardware/software approaches. Mathematical analysis techniques related to the modeling approaches. Reliability modeling. Applications of High Level Modeling. Reducing High Level Modeling to Practice. High-Level System Modeling: Specification and Design Methodologies describes the latest research and practice in the modeling of electronic systems and as such is an important update for all researchers, design engineers and technical managers working in design automation and circuit design.
A reactive system is one that is in continual interaction with its environment and executes at a pace determined by that environment. Examples of reactive systems are network protocols, air-traffic control systems, industrial-process control systems etc. Reactive systems are ubiquitous and represent an important class of systems. Due to their complex nature, such systems are extremely difficult to specify and implement. Many reactive systems are employed in highly-critical applications, making it crucial that one considers issues such as reliability and safety while designing such systems. The design of reactive systems is considered to be problematic, and p.oses one of the greatest challenges in the field of system design and development. In this paper, we discuss specification-modeling methodologies for reactive systems. Specification modeling is an important stage in reactive system design where the designer specifies the desired properties of the reactive system in the form of a specification model. This specification model acts as the guidance and source for the implementation. To develop the specification model of complex systems in an organized manner, designers resort to specification modeling methodologies. In the context of reactive systems, we can call such methodologies reactive-system specification modeling methodologies.
This title covers all software-related aspects of SoC design, from embedded and application-domain specific operating systems to system architecture for future SoC. It will give embedded software designers invaluable insights into the constraints imposed by the use of embedded software in an SoC context.
This book is a definitive introduction to models of computation for the design of complex, heterogeneous systems. It has a particular focus on cyber-physical systems, which integrate computing, networking, and physical dynamics. The book captures more than twenty years of experience in the Ptolemy Project at UC Berkeley, which pioneered many design, modeling, and simulation techniques that are now in widespread use. All of the methods covered in the book are realized in the open source Ptolemy II modeling framework and are available for experimentation through links provided in the book. The book is suitable for engineers, scientists, researchers, and managers who wish to understand the rich possibilities offered by modern modeling techniques. The goal of the book is to equip the reader with a breadth of experience that will help in understanding the role that such techniques can play in design.
System-level modeling of MEMS - microelectromechanical systems - comprises integrated approaches to simulate, understand, and optimize the performance of sensors, actuators, and microsystems, taking into account the intricacies of the interplay between mechanical and electrical properties, circuitry, packaging, and design considerations. Thereby, system-level modeling overcomes the limitations inherent to methods that focus only on one of these aspects and do not incorporate their mutual dependencies. The book addresses the two most important approaches of system-level modeling, namely physics-based modeling with lumped elements and mathematical modeling employing model order reduction methods, with an emphasis on combining single device models to entire systems. At a clearly understandable and sufficiently detailed level the readers are made familiar with the physical and mathematical underpinnings of MEMS modeling. This enables them to choose the adequate methods for the respective application needs. This work is an invaluable resource for all materials scientists, electrical engineers, scientists working in the semiconductor and/or sensor industry, physicists, and physical chemists.
Here is an extremely useful book that provides insight into a number of different flavors of processor architectures and their design, software tool generation, implementation, and verification. After a brief introduction to processor architectures and how processor designers have sometimes failed to deliver what was expected, the authors introduce a generic flow for embedded on-chip processor design and start to explore the vast design space of on-chip processing. The authors cover a number of different types of processor core.
This book offers readers a set of new approaches and tools a set of tools and techniques for facing challenges in parallelization with design of embedded systems. It provides an advanced parallel simulation infrastructure for efficient and effective system-level model validation and development so as to build better products in less time. Since parallel discrete event simulation (PDES) has the potential to exploit the underlying parallel computational capability in today’s multi-core simulation hosts, the author begins by reviewing the parallelization of discrete event simulation, identifying problems and solutions. She then describes out-of-order parallel discrete event simulation (OoO PDES), a novel approach for efficient validation of system-level designs by aggressively exploiting the parallel capabilities of todays’ multi-core PCs. This approach enables readers to design simulators that can fully exploit the parallel processing capability of the multi-core system to achieve fast speed simulation, without loss of simulation and timing accuracy. Based on this parallel simulation infrastructure, the author further describes automatic approaches that help the designer quickly to narrow down the debugging targets in faulty ESL models with parallelism.
This book constitutes the refereed proceedings of the 17th International Conference on Principles of Distributed Systems, OPODIS 2013, held in Nice, France, in December 2013. The 19 papers presented together with two invited talks were carefully reviewed and selected from 41 submissions. The conference is an international forum for the exchange of state-of-the-art knowledge on distributed computing and systems. Papers were sought soliciting original research contributions to the theory, specification, design and implementation of distributed systems.
Describes in a consolidated way the results of a three-year research project, during which researchers from leading european industrial companies and research institutes have been working together. Contributors come from academia and industry, such companies as INTRACOM, VTT and Nokia being represented Proposes brand new approaches based on SystemC and OCAPI-XL that explicitly handle issues related to reconfiguration at the system level Introduces a design flow for designing reconfigurable systems-on-chip Provides a comprehensive introduction to reconfigurable hardware and existing reconfigurable technologies Presents examples on how reconfigurable hardware can be exploited for the development of complex systems Provides useful feedback from the application of the proposed design flow and system level design methods on different real life design cases