Download Free High Intensity Pulsed Light In Processing And Preservation Of Foods Book in PDF and EPUB Free Download. You can read online High Intensity Pulsed Light In Processing And Preservation Of Foods and write the review.

High intensity pulsed light (PL) is one of the most appealing non-thermal technologies, due to its short treatment time and its wide range of applications in the preservation of packaged and unpackaged food products, as well as non-preservation processes for the food industry, water disinfection and medical applications. This is confirmed by the large increase in research articles published on the subject over the past years, and increasing interest from food producers concerning the use of this technology. High Intensity Pulsed Light in Processing and Preservation of Foods is the first book specifically focused on PL technology in a convenient single-source volume. It offers an incisive view on the latest developments and advances in this exciting technology from the perspective of microbiologists, biochemists, food technologists, electrical, environmental and food engineers, and medical doctors. On completion, it will provide a comprehensive overview of this field, highlighting the positive aspects of pulsed light applications as well as discussing areas of weakness and future trends. The book first provides basic information on the need for food preservation, the decontamination problems faced by the food industry and the expectations of the consumers. The most appealing current and emerging methods are briefly described, providing a general review of the applications and the efficacy of conventional UV light for the purpose of inactivating microorganisms in the food and water. Part I follows the introduction and reviews the principles of PL technology as non-thermal decontamination methods of foods while also describing equipment for generation of PL, the main critical design factors and control parameters. It also deals with the potential safety hazards when treating foods with PL. Part II critically analyses and discusses the effect of PL on safety and quality of food products. It elucidates mechanisms of microbial inactivation, discusses critical processing factors, reviews current background on the inactivation kinetics of microorganisms and enzymes as well as the impact on bioactive molecules, nutritional properties and quality parameters in foods. The use of PL as part of a hurdle or minimal processing strategy in conjunction with other factors or techniques of preservation is also considered. Finally, the third part of the book describes applications of the PL technology past the food sector, such as for water disinfection and parts of the medical field as well as regulatory aspects. High Intensity Pulsed Light in Processing and Preservation of Foods is a valuable reference for members of both academia and industry who are interested in gaining wide and comprehensive knowledge of PL technology.
A comprehensive source of in-depth information provided on existing and emerging food technologies based on the electromagnetic spectrum Electromagnetic Technologies in Food Science examines various methods employed in food applications that are based on the entire electromagnetic (EM) spectrum. Focusing on recent advances and challenges in food science and technology, this is an up-to-date volume that features vital contributions coming from an international panel of experts who have shared both fundamental and advanced knowledge of information on the dosimetry methods, and on potential applications of gamma irradiation, electron beams, X-rays, radio and microwaves, ultraviolet, visible, pulsed light, and more. Organized into four parts, the text begins with an accessible overview of the physics of the electromagnetic spectrum, followed by discussion on the application of the EM spectrum to non-thermal food processing. The physics of infrared radiation, microwaves, and other advanced heating methods are then deliberated in detail—supported by case studies and examples that illustrate a range of both current and potential applications of EM-based methods. The concluding section of the book describes analytical techniques adopted for quality control, such as hyperspectral imaging, infrared and Raman spectroscopy. This authoritative book resource: Covers advanced theoretical knowledge and practical applications on the use of EM spectrum as novel methods in food processing technology Discusses the latest progress in developing quality control methods, thus enabling the control of continuous fast-speed processes Explores future challenges and benefits of employing electromagnetic spectrum in food technology applications Addresses emerging processing technologies related to improving safety, preservation, and overall quality of various food commodities Electromagnetic Technologies in Food Science is an essential reading material for undergraduate and graduate students, researchers, academics, and agri-food professionals working in the area of food preservation, novel food processing techniques and sustainable food production.
Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms covers the latest advances in non-thermal processing, including mechanical processes (such as high pressure processing, high pressure homogenization, high hydrodynamic pressure processing, pressurized fluids); electromagnetic technologies (like pulsed electric fields, high voltage electrical discharges, Ohmic heating, chemical electrolysis, microwaves, radiofrequency, cold plasma, UV-light); acoustic technologies (ultrasound, shockwaves); innovative chemical processing technologies (ozone, chlorine dioxide, electrolysis, oxidized water) and others like membrane filtration and dense phase CO2. The title also focuses on understanding the effects of such processing technologies on inactivation of the most relevant pathogenic and spoilage microorganisms to ensure food safety and stability. Over the course of the 20th century, the interest and demand for the development and application of new food preservation methods has increased significantly. The research in the last 50 years has produced various innovative food processing technologies and the use of new technologies for inactivation of spoilage and/or pathogenic microorganisms will depend on several factors. At this stage of development there is a need to better understand the mechanisms that govern microbial inactivation as induced by new and innovative processing technologies, as well as suitable and effective conditions for inactivating the microorganism. - Serves as a summary of relevant spoilage and pathogenic microorganisms for different foods as influenced by the application of innovative technologies for their preservation - Provides readers with an in-depth understanding on how effective innovative processing technologies are for controlling spoilage and pathogenic microorganisms in different foods - Integrates concepts in order to find the optimum conditions for microbial inactivation and preservation of major and minor food compounds
Preservation of Foods with Pulsed Electric Fields discusses the basics of high voltage PEF as a low temperature food processing method, and the application of this technology in food preservation. This technology is attracting a great deal of interest around the world because it is more cost effective than conventional systems due to the conservative nature of PEF. This book thoroughly covers the electrical and food engineering aspects, as well as the food science components (i.e. food microbiology, enzyme inactivation kinetics, and sensory evaluation). - Fundamentals of high intensity pulsed electric fields - Design of PEF processing equipment - Biological principles for microbial inactivation in electric fields - PEF-induced biological changes - PEF inactivation of vegetable cells, spores, and enzymes in foods - Food processing by PEF - HACCP in PEF processing - PEF in the food industry for the new millennium
Food process engineering, a branch of both food science and chemical engineering, has evolved over the years since its inception and still is a rapidly changing discipline. While traditionally the main objective of food process engineering was preservation and stabilization, the focus today has shifted to enhance health aspects, flavour and taste, nutrition, sustainable production, food security and also to ensure more diversity for the increasing demand of consumers. The food industry is becoming increasingly competitive and dynamic, and strives to develop high quality, freshly prepared food products. To achieve this objective, food manufacturers are today presented with a growing array of new technologies that have the potential to improve, or replace, conventional processing technologies, to deliver higher quality and better consumer targeted food products, which meet many, if not all, of the demands of the modern consumer. These new, or innovative, technologies are in various stages of development, including some still at the R&D stage, and others that have been commercialised as alternatives to conventional processing technologies. Food process engineering comprises a series of unit operations traditionally applied in the food industry. One major component of these operations relates to the application of heat, directly or indirectly, to provide foods free from pathogenic microorganisms, but also to enhance or intensify other processes, such as extraction, separation or modification of components. The last three decades have also witnessed the advent and adaptation of several operations, processes, and techniques aimed at producing high quality foods, with minimum alteration of sensory and nutritive properties. Some of these innovative technologies have significantly reduced the thermal component in food processing, offering alternative nonthermal methods. Food Processing Technologies: A Comprehensive Review, Three Volume Set covers the latest advances in innovative and nonthermal processing, such as high pressure, pulsed electric fields, radiofrequency, high intensity pulsed light, ultrasound, irradiation and new hurdle technology. Each section will have an introductory article covering the basic principles and applications of each technology, and in-depth articles covering the currently available equipment (and/or the current state of development), food quality and safety, application to various sectors, food laws and regulations, consumer acceptance, advancements and future scope. It will also contain case studies and examples to illustrate state-of-the-art applications. Each section will serve as an excellent reference to food industry professionals involved in the processing of a wide range of food categories, e.g., meat, seafood, beverage, dairy, eggs, fruits and vegetable products, spices, herbs among others.
"Written by four experts actively researching alternatives to conventional thermal methods in food preservation. Presents information on traditional and emerging nonthermal food processing technologies in a convenient, single-source volume--offering an incisive view of the latest experimental results, state-of-the-art applications, and new developments in food preservation technology. Furnishes a thorough review of nonthermal techniques such as high hydrostatic pressure, pulsed electric fields, oscillating magnetic fields, light pulses, ionizing irradiation, the use of chemicals and bacteriocins as preservation aids, and combined methods/hurdle technology."
Nonthermal Processing Technologies for Food offers a comprehensive review of nonthermal processing technologies that are commercial, emerging or over the horizon. In addition to the broad coverage, leading experts in each technology serve as chapter authors to provide depth of coverage. Technologies covered include: physical processes, such as high pressure processing (HPP); electromagnetic processes, such as pulsed electric field (PEF), irradiation, and UV treatment; other nonthermal processes, such as ozone and chlorine dioxide gas phase treatment; and combination processes. Of special interest are chapters that focus on the "pathway to commercialization" for selected emerging technologies where a pathway exists or is clearly identified. These chapters provide examples and case studies of how new and nonthermal processing technologies may be commercialized. Overall, the book provides systematic knowledge to industrial readers, with numerous examples of process design to serve as a reference book. Researchers, professors and upper level students will also find the book a valuable text on the subject.
This text comprehensively covers novel, innovative technologies used in the food and beverage industries in order to provide safe and healthy foods for consumers. The research provided in these chapters aims to show that the traditional pasteurization and commercial sterilization of foods result in unacceptable quality and nutrient retention, creating an important need for alternative methods used to minimize undesirable reactions such as thermal decomposition or degradation. Emerging processing methods to minimize heat induced alterations in foods and their applications are covered in-depth, demonstrating that these methods are useful not only for the inactivation of microorganisms and enzymes but also for improving the yield and development of ingredients and marketable foods with higher quality and better nutritional characteristics. Effect of Emerging Processing Methods on the Food Quality: Advantages and Challenges not only covers the advantages of using innovative processing methods, but also the disadvantages and challenges of using these techniques on food quality. Each chapter focuses on a different emerging processing technique, breaking down the sensory, textural and nutritional aspects for different food products in addition to the advantages and challenges for each method. New technologies and advanced theories are a major focus, pointing to innovative new paths for the quality and safety assurance in food products. From pulsed electric fields to ultrasounds, this work covers all aspects of emerging processing techniques for fruits and vegetables, foods and dairy products.
UV light is one of a number of emerging non-thermal food processing technologies that can be used in a broad range of applications producing food products with longer shelf-life, more safe, and with higher nutritional quality. The new edition of Ultraviolet Light in Food Technology: Principles and Applications will present recent understanding of the fundamentals of UV light along with new applied knowledge that has accumulated during the 7 years since the first edition published in 2009. The new edition of the book will have 11 chapters including 2 new chapters--on chemical destruction with UV light and food plant safety—along with 6 chapters greatly expanded and updated.
Green Food Processing Techniques: Preservation, Transformation and Extraction advances the ethics and practical objectives of "Green Food Processing" by offering a critical mass of research on a series of methodological and technological tools in innovative food processing techniques, along with their role in promoting the sustainable food industry. These techniques (such as microwave, ultrasound, pulse electric field, instant controlled pressure drop, supercritical fluid processing, extrusion...) lie on the frontier of food processing, food chemistry, and food microbiology, and are thus presented with tools to make preservation, transformation and extraction greener. The Food Industry constantly needs to reshape and innovate itself in order to achieve the social, financial and environmental demands of the 21st century. Green Food Processing can respond to these challenges by enhancing shelf life and the nutritional quality of food products, while at the same time reducing energy use and unit operations for processing, eliminating wastes and byproducts, reducing water use in harvesting, washing and processing, and using naturally derived ingredients. - Introduces the strategic concept of Green Food Processing to meet the challenges of the future of the food industry - Presents innovative techniques for green food processing that can be used in academia, and in industry in R&D and processing - Brings a multidisciplinary approach, with significant contributions from eminent scientists who are actively working on Green Food Processing techniques