Download Free High Frequency Approximations In Elastic Wave Theory Book in PDF and EPUB Free Download. You can read online High Frequency Approximations In Elastic Wave Theory and write the review.

Elastic Waves: High Frequency Theory is concerned with mathematical aspects of the theory of high-frequency elastic waves, which is based on the ray method. The foundations of elastodynamics are presented along with the basic theory of plane and spherical waves. The ray method is then described in considerable detail for bulk waves in isotropic and anisotropic media, and also for the Rayleigh waves on the surface of inhomogeneous anisotropic elastic solids. Much attention is paid to analysis of higher-order terms and to generation of waves in inhomogeneous media. The aim of the book is to present a clear, systematic description of the ray method, and at the same time to emphasize its mathematical beauty. Luckily, this beauty is usually not accompanied by complexity and mathematical ornateness.
John G. Harris intended to explain in this book the special techniques required to model the radiation and diffraction of elastic and surface waves. Sadly, he died before he could fulfil this ambition, but his plan has been brought to fruition by a team of his distinguished collaborators. The book begins with the basic underlying equations for wave motion and then builds upon this foundation by solving a number of fundamental scattering problems. The remaining chapters provide a thorough introduction to modern techniques that have proven essential to understanding radiation and diffraction at high frequencies. Graduate students, researchers and professionals in applied mathematics, physics and engineering will find that the chapters increase in complexity, beginning with plane-wave propagation and spectral analyses. Other topics include elastic wave theory, the Wiener–Hopf technique, the effects of viscosity on acoustic diffraction, and the phenomenon of channelling of wave energy along guided structures.
This is the second edition of the textbook that was first published by Elsevier Science. Professor Slawinski has the copyright to the textbook and the second edition is significantly extended. The present book emphasizes the interdependence of mathematical formulation and physical meaning in the description of seismic phenomena. Herein, we use aspects of continuum mechanics, wave theory and ray theory to explain phenomena resulting from the propagation of seismic waves. The book is divided into three main sections: elastic continua, waves and rays and variational formulation of rays. There is also a fourth part, which consists of appendices. In Part 1, we use continuum mechanics to describe the material through which seismic waves propagate, and to formulate a system of equations to study the behaviour of such a material. In Part 2, we use these equations to identify the types of body waves propagating in elastic continua as well as to express their velocities and displacements in terms of the properties of these continua. To solve the equations of motion in anisotropic inhomogeneous continua, we use the high-frequency approximation and, hence, establish the concept of a ray. In Part 3, we show that, in elastic continua, a ray is tantamount to a trajectory along which a seismic signal propagates in accordance with the variational principle of stationary traveltime. Consequently, many seismic problems in elastic continua can be conveniently formulated and solved using the calculus of variations. In Part 4, we describe two mathematical concepts that are used in the book; namely, homogeneity of a function and Legendre's transformation. This section also contains a list of symbols.
The primary objective of this book is to give the reader a basic understanding of waves and their propagation in a linear elastic continuum. The studies of elastodynamic theory and its application to fundamental value problems should prepare the reader to tackle many physical problems of general interest in engineering and geophysics, and of particular interest in mechanics and seismology.
This text is a study of the asymptotic approximations of the 3-D dynamical equations of elasticity in the case of thin elastic shells of an arbitrary shape.
This book seeks to explore seismic phenomena in elastic media and emphasizes the interdependence of mathematical formulation and physical meaning. The purpose of this title - which is intended for senior undergraduate and graduate students as well as scientists interested in quantitative seismology - is to use aspects of continuum mechanics, wave theory and ray theory to describe phenomena resulting from the propagation of waves. The book is divided into three parts: Elastic continua, Waves and rays, and Variational formulation of rays. In Part I, continuum mechanics are used to describe the material through which seismic waves propagate, and to formulate a system of equations to study the behaviour of such material. In Part II, these equations are used to identify the types of body waves propagating in elastic continua as well as to express their velocities and displacements in terms of the properties of these continua. To solve the equations of motion in anisotropic inhomogeneous continua, the high-frequency approximation is used and establishes the concept of a ray. In Part III, it is shown that in elastic continua a ray is tantamount to a trajectory along which a seismic signal propagates in accordance with the variational principle of stationary travel time.
Written by a well-known group of researchers from Moscow, this book is a study of the asymptotic approximations of the 3-D dynamical equations of elasticity in the case of thin elastic shells of an arbitrary shape. Vibration of shells is a very useful theory in space techniques, submarine detection, and other high-tech domains. Dynamics of Thin Walled Elastic Bodies shows that refined shell theories used in engineering practice give a distorted picture of the high-frequency or non-stationary dynamics of shells, and offers new, mathematically more consistent ways of describing the dynamics of shells. Studies the asymptotic approximations of the 3-D dynamical equations of elasticity Vibration of shells is a very useful theory in space techniques, submarine detection, and other high-tech domains Shows that refined shell theories used in engineering practice give a distorted picture of the high-frequency or non-stationary dynamics of shells Offers new, mathematically more consistent ways of describing the dynamics of shells